Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试卷 / 初中数学 / 试卷选题
  • 2020-03-18
  • 题量:28
  • 年级:九年级
  • 类型:练习检测
  • 浏览:1241

暖春三月,贴心开学测 初三数学第九套

1、

二次根式的值是( )

A.﹣3 B.3或﹣3 C.9 D.3
  • 题型:1
  • 难度:容易
  • 人气:1887
2、

若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1+x2的值是( )

A.1 B.5 C.﹣5 D.6
  • 题型:1
  • 难度:较易
  • 人气:1073
3、

把三角形三边的长度都扩大为原来的2倍,则锐角A的正弦函数值( )

A.扩大为原来的2倍 B.缩小为原来的
C.不变 D.不能确定
  • 题型:1
  • 难度:容易
  • 人气:289
4、

当x=2时,正比例函数y=k1x(k1≠0)与反比例函数y=(k2≠0)的值相等,则k1与k2的比是( )

A.4:1 B.2:1 C.1:2 D.1:4
  • 题型:1
  • 难度:较易
  • 人气:609
5、

根据下列表格的对应值:

x
0.00
0.25
0.50
0.75
1.00
x2+5x﹣3
﹣3.00
﹣1.69
﹣0.25
1.31
3.00

 
可得方程x2+5x﹣3=0一个解x的范围是( )
A.0<x<25             B.0.25<x<0.50
C.0.50<x<0.75        D.0.75<x<1

  • 题型:1
  • 难度:容易
  • 人气:1871
6、

若关于x的一元二次方程(a﹣1)x2+2x+1=0有两个不相等的实数根,则( )

A.a<2 B.a≤2且a≠1
C.a>2 D.a<2且a≠1
  • 题型:1
  • 难度:较易
  • 人气:592
7、

如图,有一圆形展厅,在其圆形边缘上的点A处安装了一台监视器,它的监控角度是65°.为了监控整个展厅,最少需在圆形边缘上共安装这样的监视器( )台.

A.3 B.4 C.5 D.6
  • 题型:1
  • 难度:中等
  • 人气:1202
8、

如图将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD于点E,则下到结论不一定成立的是( )

A.AD=BC′ B.∠EBD=∠EDB
C.△ABE∽△CBD D.sin∠ABE=
  • 题型:1
  • 难度:较难
  • 人气:354
9、

计算:=     

  • 题型:2
  • 难度:较易
  • 人气:413
10、

已知关于x的一元二次方程(m﹣2)2x2+(2m+1)x+1=0有两个不相等的实数根,则m的取值范围是     

  • 题型:2
  • 难度:容易
  • 人气:1721
11、

观察下列计算:=﹣1,===…从计算结果中找出规律,并利用这一规律计算:(+++…+)(+1)=     

  • 题型:2
  • 难度:较易
  • 人气:1711
12、

如图,A、B、C在⊙O上,若∠AOB=100°,则∠ACB=   

  • 题型:2
  • 难度:容易
  • 人气:1552
13、

已知点P(﹣1,m)在二次函数y=x2﹣1的图象上,则m的值为      ;平移此二次函数的图象,使点P与坐标原点重合,则平移后的函数图象所对应的解析式为     

  • 题型:2
  • 难度:容易
  • 人气:996
14、

二次函数y=﹣x2+2x,当x      时y<0;且y随x的增大而减小.

  • 题型:2
  • 难度:较易
  • 人气:1752
15、

如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,若其与x轴一交点为B(3,0),则由图象可知,不等式ax2+bx+c>0的解集是     

  • 题型:2
  • 难度:中等
  • 人气:1124
16、

△ABC内接与⊙O,已知∠BOC=120°,则∠BAC=     

  • 题型:2
  • 难度:困难
  • 人气:255
17、

计算:2sin30°+cos45°﹣tan60°.

  • 题型:13
  • 难度:较易
  • 人气:1447
18、

已知抛物线y=x2+bx+c经过(2,﹣1)和(4,3)两点.
(1)求出这个抛物线的解析式;
(2)将该抛物线向右平移1个单位,再向下平移3个单位,得到的新抛物线解析式为   

  • 题型:14
  • 难度:较易
  • 人气:2080
19、

如图,在△ABC中,∠C=90°,cosA=,AC=9.求AB的长和tanB的值.

  • 题型:14
  • 难度:中等
  • 人气:895
20、

已知四边形ABCD是菱形,在平面直角坐标系中的位置如图,边AD经过原点O,已知A(0,﹣3),B(4,0).

(1)求点D的坐标;
(2)求经过点C的反比例函数解析式.

  • 题型:14
  • 难度:中等
  • 人气:1302
21、

如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点均在格点上,在建立平面直角坐标系后,点C的坐标为(4,﹣1).

(1)画出△ABC以y轴为对称轴的对称图形△A1B1C1,并写出点C1的坐标;
(2)以原点O为对称中心,画出△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标;
(3)以A2为旋转中心,把△A2B2C2顺时针旋转90°,得到△A2B3C3,并写出点C3的坐标.

  • 题型:14
  • 难度:容易
  • 人气:1423
22、

有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b.

(1)写出k为负数的概率;
(2)求一次函数y=kx+b的图象经过二、三、四象限的概率.(用树状图或列表法求解)

  • 题型:14
  • 难度:较难
  • 人气:1553
23、

小明的爸爸下岗后,自谋职业,做起了经营水果的生意.一天,他先去批发市场,用100元购买甲种水果,用150元购乙种水果,乙种水果比甲种水果多10千克,乙种水果的批发价比甲种水果的批发价每千克高0.5元,然后到零售市场,按每千克2.80元零售,结果,乙种水果很快售完,甲种水果售出时,出现滞销,他按原零售价的5折售完剩余水果,请你帮小明的爸爸算这一天卖出水果是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少?若赚了,赚了多少?

  • 题型:14
  • 难度:中等
  • 人气:1532
24、

已知:关于x的方程x2﹣(k+2)x+2k=0
(1)求证:无论k取任何实数值,方程总有实数根;
(2)若等腰三角形ABC的一边长a=1,另两边长b,c恰好是这个方程的两个根,求△ABC的周长.

  • 题型:14
  • 难度:较难
  • 人气:1775
25、

已知:如图,二次函数(0<m<4)的图象与x轴交于A、B两点.

(1)求A、B两点的坐标(可用含字母m的代数式表示);
(2)第一象限内的点C在二次函数的图象上,且它的横坐标与纵坐标之积为9,∠BAC的正弦值为,求m的值.

  • 题型:14
  • 难度:较难
  • 人气:465
26、

如图,在△ABC中,∠C=Rt∠,以顶点C为圆心,BC为半径作圆.若AC=4,tanA=

(1)求AB长;
(2)求⊙C截AB所得弦BD的长.

  • 题型:14
  • 难度:困难
  • 人气:1753
27、

如图,BC是半圆O的直径,D是弧AC的中点,四边形ABCD的对角线AC、BD交于点E,CE=,CD=2.

(1)求直径BC的长;
(2)求弦AB的长.

  • 题型:14
  • 难度:困难
  • 人气:1804
28、

已知:在平面直角坐标系xOy中,二次函数y=﹣x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,点A在x轴负半轴上,点B在x轴正半轴上,且CO=BO=3AO,AB=4,抛物线的顶点为D.
(1)求这个二次函数的解析式;
(2)点E(0,n)在y轴正半轴上,且位于点C的下方.当n在什么范围内取值时∠CBD<∠CED?当n在什么范围内取值时∠CBD>∠CED?
(3)若过点B的直线垂直于BD且与直线CD交于点P,求点P的坐标.

  • 题型:14
  • 难度:困难
  • 人气:1285