优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试卷 / 高中数学 / 试卷选题
  • 2021-09-14
  • 题量:23
  • 年级:高三
  • 类型:高考冲刺
  • 浏览:1795

上海市长宁区、嘉定区高三二模理科数学试卷

1、

已知集合,,则________.

  • 题型:2
  • 难度:容易
  • 人气:2028
2、

抛物线的焦点到准线的距离是______________.

  • 题型:2
  • 难度:容易
  • 人气:1998
3、

,其中,是虚数单位,则_________.

  • 题型:2
  • 难度:较易
  • 人气:1949
4、

已知函数,若,,则的取值范围是_______.

  • 题型:2
  • 难度:中等
  • 人气:1759
5、

设等差数列满足,,的前项和的最大值为,则=__________.

  • 题型:2
  • 难度:中等
  • 人气:740
6、

),且,则_______________.

  • 题型:2
  • 难度:中等
  • 人气:814
7、

已知对任意,向量都是直线的方向向量,设数列的前项和为,若,则_____________.

  • 题型:2
  • 难度:较难
  • 人气:1645
8、

已知定义在上的单调函数的图像经过点,若函数的反函数为,则不等式的解集为               

  • 题型:2
  • 难度:中等
  • 人气:1766
9、

已知方程上有两个不相等的实数解,则实数的取值范围是____________.

  • 题型:2
  • 难度:困难
  • 人气:1823
10、

随机变量的分布列如下表所示,其中,,成等差数列,若,则的值是___________.









 

  • 题型:2
  • 难度:较易
  • 人气:683
11、

现有张不同的卡片,其中红色、黄色、蓝色、绿色卡片各张.从中任取张,要求这张卡片不能是同一种颜色,且红色卡片至多张.则不同取法的种数为__________.

  • 题型:2
  • 难度:较难
  • 人气:1137
12、

在平面直角坐标系中,点和点满足按此规则由点得到点,称为直角坐标平面的一个“点变换”.在此变换下,若,向量的夹角为,其中为坐标原点,则的值为____________.

  • 题型:2
  • 难度:中等
  • 人气:366
13、

设定义域为的函数若关于的函数个不同的零点,则实数的取值范围是____________.

  • 题型:2
  • 难度:较难
  • 人气:1166
14、

把正整数排列成如图甲三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙的三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列,若,则________.

  • 题型:2
  • 难度:容易
  • 人气:1628
15、

在△中,“”是“”的(   )

A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既非充分又非必要条件
  • 题型:1
  • 难度:较易
  • 人气:881
16、

已知平面直角坐标系内的两个向量,,且平面内的任一向量都可以唯一的表示成为实数),则实数的取值范围是(   )

A. B.
C. D.
  • 题型:1
  • 难度:中等
  • 人气:746
17、

极坐标方程)表示的图形是(   )

A.两个圆 B.两条直线
C.一个圆和一条射线 D.一条直线和一条射线
  • 题型:1
  • 难度:较易
  • 人气:1059
18、

在四棱锥中,,分别为侧棱,的中点,则四面体的体积与四棱锥的体积之比为(   )

A. B. C. D.
  • 题型:1
  • 难度:中等
  • 人气:1013
19、

本题共有2个小题,第1小题满分6分,第2小题满分6分.
在△中,已知,外接圆半径
(1)求角的大小;
(2)若角,求△面积的大小.

  • 题型:14
  • 难度:中等
  • 人气:760
20、

本题共有2个小题,第1小题满分6分,第2小题满分8分.
如图,四棱锥的底面为菱形,平面,,,的中点.

(1)求证:平面
(2)求平面与平面所成的锐二面角大小的余弦值.

  • 题型:14
  • 难度:中等
  • 人气:1496
21、

本题共有2个小题,第1小题满分5分,第2小题满分9分.
某市环保部门对市中心每天的环境污染情况进行调查研究后,发现一天中环境综合污染指数与时刻(时)的关系为,,其中是与气象有关的参数,且.若用每天的最大值为当天的综合污染指数,并记作
(1)令,,求的取值范围;
(2)求的表达式,并规定当时为综合污染指数不超标,求当在什么范围内时,该市市中心的综合污染指数不超标.

  • 题型:14
  • 难度:较难
  • 人气:345
22、

(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
已知椭圆)的左、右焦点分别为,点,过点且与垂直的直线交轴负半轴于点,且
(1)求证:△是等边三角形;
(2)若过三点的圆恰好与直线相切,求椭圆的方程;
(3)设过(2)中椭圆的右焦点且不与坐标轴垂直的直线交于两点,是点关于轴的对称点.在轴上是否存在一个定点,使得三点共线,若存在,求出点的坐标;若不存在,请说明理由.

  • 题型:14
  • 难度:中等
  • 人气:964
23、

本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
已知数列中,,,的前项和为,且满足).
(1)试求数列的通项公式;
(2)令,是数列的前项和,证明:
(3)证明:对任意给定的,均存在,使得当时,(2)中的恒成立.

  • 题型:14
  • 难度:较难
  • 人气:193