高考原创文科数学预测卷 02(新课标2卷)
已知集合,,则( )
A. | B. | C. | D. |
- 题型:1
- 难度:中等
- 人气:893
在复平面内,复数对应的点位于 ( )
A.第一象限 | B.第二象限 |
C.第三象限 | D.第四象限 |
- 题型:1
- 难度:中等
- 人气:1866
“函数在上存在零点”是的“”( )
A.充分不必要条件 | B.必要不充分条件 |
C.充要条件 | D.既不充分也不必要条件 |
- 题型:1
- 难度:中等
- 人气:215
已知向量与的夹角为,则( )
A. | B. | C. | D. |
- 题型:1
- 难度:中等
- 人气:185
在各项均为正数的等比数列中,成等差数列,则公比q为( )
A. | B. | C. | D. |
- 题型:1
- 难度:中等
- 人气:387
一个几何体的三视图如图所示,已知这个几何体的体积为,则( )
A. | B. | C. | D. |
- 题型:1
- 难度:中等
- 人气:335
湖面上飘着一个小球,湖水结冰后将球取出,冰面上留下一个半径为,深的空穴,则取出该球前,球面上的点到冰面的最大距离为( )
A. | B. | C. | D. |
- 题型:1
- 难度:中等
- 人气:1775
执行下面的程序框图,输出的的值为:( )
A.225 | B.256 | C.289 | D.324 |
- 题型:1
- 难度:中等
- 人气:1392
若实数满足不等式,且目标函数的最大值为( )
A.1 | B.2 | C.3 | D.4 |
- 题型:1
- 难度:中等
- 人气:1379
已知双曲线,过其右焦点作圆的两条切线,切点记作,,双曲线的右顶点为,,其双曲线的离心率为( )
A. | B. | C. | D. |
- 题型:1
- 难度:中等
- 人气:357
若函数在区间上单调递增,则实数的取值范围是( )
A. | B. | C. | D. |
- 题型:1
- 难度:中等
- 人气:1103
若圆C:关于直线对称,则由点向圆所作的切线长的最小值是( )
A.2 | B.4 | C.3 | D.6 |
- 题型:1
- 难度:中等
- 人气:594
某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校抽取6所学校对学生进行视力调查.若从抽取的6所学校中随机抽取2所学校做进一步数据分析,则抽取的2所学校均为小学的概率为_________.
- 题型:2
- 难度:中等
- 人气:135
已知,则 .
- 题型:2
- 难度:中等
- 人气:2008
若函数存在最大值M和最小值N, 则M+N的值为_______.
- 题型:2
- 难度:中等
- 人气:1740
已知定义在上的函数是奇函数且满足,,数列满足,且,(其中为的前项和),则
- 题型:2
- 难度:中等
- 人气:1829
在中,角的对边分别为且
(1)求的值;
(2)若,且,求的面积.
- 题型:14
- 难度:中等
- 人气:1271
如图1,在直角梯形中,,,, 点 为中点.将沿折起, 使平面平面,得到几何体,如图2所示.
(1)在上找一点,使平面;
(2)求点到平面的距离.
- 题型:14
- 难度:中等
- 人气:465
某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日 期 |
1月10日 |
2月10日 |
3月10日 |
4月10日 |
5月10日 |
6月10日 |
昼夜温差x(°C) |
10 |
11 |
13 |
12 |
8 |
6 |
就诊人数y(个) |
22 |
25 |
29 |
26 |
16 |
12 |
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问(2)中所得线性回归方程序是否理想?
- 题型:14
- 难度:中等
- 人气:295
已知椭圆的焦距为,且过点.
(1)求椭圆的方程;
(2)已知,是否存在使得点关于的对称点(不同于点)在椭圆上?若存在求出此时直线的方程,若不存在说明理由.
- 题型:14
- 难度:中等
- 人气:2105
已知函数().
(1)若函数在处取得极值,求的值;
(2)在(1)的条件下,求证:;
(3)当时,恒成立,求的取值范围.
- 题型:14
- 难度:中等
- 人气:310
如图,已知切⊙于点,割线交⊙于两点,∠的平分线和分别交于点.
求证:(1);
(2)
- 题型:14
- 难度:中等
- 人气:1783
在直角坐标系中,半圆C的参数方程为(为参数,),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求C的极坐标方程;
(Ⅱ)直线的极坐标方程是,射线OM:与半圆C的交点为O、P,与直线的交点为Q,求线段PQ的长.
- 题型:14
- 难度:中等
- 人气:1752
已知函数.
(Ⅰ)求不等式的解集;
(Ⅱ)若关于的不等式恒成立,求实数的取值范围.
- 题型:14
- 难度:中等
- 人气:198