湖南省益阳市高三四月调研考试理科数学试卷
复数(为虚数单位)在复平面内对应的点位于
A.第一象限 | B.第二象限 | C.第三象限 | D.第四象限 |
- 题型:1
- 难度:中等
- 人气:1295
已知向量,,若,则的值为
A. | B. | C. | D. |
- 题型:1
- 难度:较易
- 人气:1733
已知函数的零点为, 则所在的区间是
A. | B. | C. | D. |
- 题型:1
- 难度:中等
- 人气:1738
设,则二项式展开式中含项的系数是
A.80 | B.640 | C.-160 | D.-40 |
- 题型:1
- 难度:中等
- 人气:2148
执行如图所示的程序框图,若输出的值为70,则判断框内可填入的条件是
A. | B. | C. | D. |
- 题型:1
- 难度:较易
- 人气:1447
已知实数、满足不等式组,则的最小值是
A. | B. | C.5 | D.9 |
- 题型:1
- 难度:中等
- 人气:784
给出下列两个命题:命题:,当时,;命题:函数是偶函数.则下列命题是真命题的是
A. | B. | C. | D. |
- 题型:1
- 难度:较易
- 人气:686
十字路口车流量被定义为单位时间内通过十字路口的车辆数,小张上班经过的某十字路口某时间段内车流量变化近似符合函数(的单位是辆/分,的单位是分),则下列时间段内车流量增加的是
A. | B. | C. | D. |
- 题型:1
- 难度:较易
- 人气:190
已知直线:与双曲线:有交点,则实数的取值范围是
A. |
B. |
C. |
D. |
- 题型:1
- 难度:较易
- 人气:1836
已知函数的图象为曲线,给出以下四个命题:
①若点在曲线上,过点作曲线的切线可作一条且只能作一条;
②对于曲线上任意一点,在曲线上总可以找到一点,使和的等差中项是同一个常数;
③设函数,则的最小值是0;
④若在区间上恒成立,则a的最大值是1.其中真命题的个数是
A.1 | B.2 | C.3 | D.4 |
- 题型:1
- 难度:较易
- 人气:1870
在直角坐标系中,直线的参数方程为 (为参数).在极坐标系 (与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的极坐标方程为,若直线平分圆的周长,则 .
- 题型:2
- 难度:中等
- 人气:1250
已知R,,,则M的最大值是 .
- 题型:2
- 难度:中等
- 人气:1269
如图,已知是圆的切线,切点为,交圆于点,圆的半径为2,,则的长为 .
- 题型:2
- 难度:较易
- 人气:372
如图是某几何体的三视图,正视图和侧视图都是等腰直角三角形,俯视图是边长为3的正方形,则此几何体的体积等于 .
- 题型:2
- 难度:较易
- 人气:668
设二次函数的导函数为,对任意,不等式恒成立,则的最大值为 .
- 题型:2
- 难度:较易
- 人气:1729
已知为合数,且,当的各数位上的数字之和为质数时,称此质数为的“衍生质数”.
(1)若的“衍生质数”为2,则 ;
(2)设集合,,则集合中元素的个数是 .
- 题型:2
- 难度:较难
- 人气:1630
(本小题满分12分)在△ABC中,内角,,的对边长分别为a,b,c,且.
(Ⅰ)求角的大小;
(Ⅱ)若a=3,,求△ABC的面积.
- 题型:14
- 难度:较易
- 人气:1374
(本小题满分12分)某校举行中学生“珍爱地球·保护家园”的环保知识比赛,比赛分为初赛和复赛两部分,初赛采用选手从备选题中选一题答一题的方式进行;每位选手最多有5次答题机会,选手累计答对3题或答错3题即终止比赛,答对3题者直接进入复赛,答错3题者则被淘汰.已知选手甲答对每个题的概率均为,且相互间没有影响.
(Ⅰ)求选手甲进入复赛的概率;
(Ⅱ)设选手甲在初赛中答题的个数为,试求的分布列和数学期望.
- 题型:14
- 难度:中等
- 人气:1833
(本小题满分12分)如图,在长方体ABCD-A1B1C1D1中,AA1=AB=2AD=2,E为AB的中点,F为D1E上的一点,D1F=2FE.
(Ⅰ)证明:平面平面;
(Ⅱ)求二面角的平面角的余弦值.
- 题型:14
- 难度:中等
- 人气:1105
(本小题满分13分)已知数列的首项,其前和为,且满足:(N*).
(Ⅰ)求数列的通项公式;
(Ⅱ)对任意的N*,,求实数a的取值范围.
- 题型:14
- 难度:较易
- 人气:1127
(本小题满分13分)已知M(,0),N(2,0),曲线C上的任意一点P满足:.
(Ⅰ)求曲线C的方程;
(Ⅱ)设曲线C与x轴的交点分别为A、B,过N的任意直线(直线与x轴不重合)与曲线C交于R、Q两点,直线AR与BQ交于点S.问:点S是否在同一直线上?若是,请求出这条直线的方程;若不是,请说明理由.
- 题型:14
- 难度:中等
- 人气:1425
(本小题满分13分)已知函数(其中为常数).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)当时,对于任意大于1的实数,恒有成立,求实数的取值范围;
(Ⅲ)当时,设函数的3个极值点为,且.求证:.
- 题型:14
- 难度:较易
- 人气:1715