优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试卷 / 初中数学 / 试卷选题
  • 2022-01-06
  • 题量:24
  • 年级:九年级
  • 类型:中考模拟
  • 浏览:979

湖北省武汉市元月九年级调考数学试卷

1、

方程5x2﹣4x﹣1=0的二次项系数和一次项系数分别为( )

A.5和4 B.5和﹣4 C.5和﹣1 D.5和1
  • 题型:1
  • 难度:较易
  • 人气:982
2、

桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则( )

A.能够事先确定抽取的扑克牌的花色
B.抽到黑桃的可能性更大
C.抽到黑桃和抽到红桃的可能性一样大
D.抽到红桃的可能性更大
  • 题型:1
  • 难度:较易
  • 人气:1505
3、

抛物线y=x2向下平移一个单位得到抛物线( )

A.y=(x+1)2 B.y=(x﹣1)2 C.y=x2+1 D.y=x2﹣1
  • 题型:1
  • 难度:中等
  • 人气:1951
4、

用频率估计概率,可以发现,抛掷硬币,“正面朝上”的概率为0.5,是指( )

A.连续掷2次,结果一定是“正面朝上”和“反面朝上”各1次
B.连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次
C.抛掷2n次硬币,恰好有n次“正面朝上”
D.抛掷n次,当n越来越大时,正面朝上的频率会越来越稳定于0.5
  • 题型:1
  • 难度:中等
  • 人气:1557
5、

如图,在⊙O中,弦AB,AC互相垂直,D,E分别为AB,AC的中点,则四边形OEAD为( )

A.正方形 B.菱形 C.矩形 D.直角梯形
  • 题型:1
  • 难度:较易
  • 人气:309
6、

在平面直角坐标系中,点A(﹣4,1)关于原点的对称点的坐标为( )

A.(4,1) B.(4,﹣1) C.(﹣4,﹣1) D.(﹣1,4)
  • 题型:1
  • 难度:容易
  • 人气:523
7、

圆的直径为13cm,如果圆心与直线的距离是d,则( )

A.当d="8" cm,时,直线与圆相交
B.当d="4.5" cm时,直线与圆相离
C.当d="6.5" cm时,直线与圆相切
D.当d="13" cm时,直线与圆相切
  • 题型:1
  • 难度:容易
  • 人气:1521
8、

用配方法解方程x2+10x+9=0,配方正确的是( )

A.(x+5)2="16" B.(x+5)2=34
C.(x﹣5)2="16" D.(x+5)2=25
  • 题型:1
  • 难度:较易
  • 人气:654
9、

如图,在平面直角坐标系中,抛物线y=ax2+bx+5经过A(2,5),B(﹣1,2)两点,若点C在该抛物线上,则C点的坐标可能是( )

A.(﹣2,0) B.(0.5,6.5) C.(3,2) D.(2,2)
  • 题型:1
  • 难度:较易
  • 人气:1258
10、

如图,在⊙O中,弦AD等于半径,B为优弧AD上的一动点,等腰△ABC的底边BC所在直线经过点D.若⊙O的半径等于1,则OC的长不可能为( )

A.2﹣ B.﹣1 C.2 D.+1

  • 题型:1
  • 难度:较难
  • 人气:652
11、

经过某丁字路口的汽车,可能左拐,也可能右拐,如果这两种可能性一样大,则三辆汽车经过此路口时,全部右拐的概率为     

  • 题型:2
  • 难度:较易
  • 人气:1536
12、

方程x2﹣x﹣=0的判别式的值等于     

  • 题型:2
  • 难度:较易
  • 人气:1356
13、

抛物线y=﹣x2+4x﹣1的顶点坐标为     

  • 题型:2
  • 难度:中等
  • 人气:595
14、

某村的人均收入前年为12 000元,今年的人均收入为14 520元.设这两年该村人均收入的年平均增长率为x,根据题意,所列方程为     

  • 题型:2
  • 难度:中等
  • 人气:1372
15、

半径为3的圆内接正方形的边心距等于     

  • 题型:2
  • 难度:中等
  • 人气:775
16、

圆锥的底面直径是8cm,母线长9cm,则它的侧面展开图的圆心角的度数为     

  • 题型:2
  • 难度:中等
  • 人气:1227
17、

解方程:x2+2x﹣3=0.

  • 题型:13
  • 难度:中等
  • 人气:798
18、

不透明的袋子中装有红色小球1个、绿色小球2个,除颜色外无其他差别.
(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画村状图的方法求出“两球都是绿色”的概率;
(2)随机摸出两个小球,直接写出两次都是绿球的概率.

  • 题型:14
  • 难度:中等
  • 人气:745
19、

如图,在⊙O中,半径OA⊥弦BC,点E为垂足,点D在优弧上.

(1)若∠AOB=56°,求∠ADC的度数;
(2)若BC=6,AE=1,求⊙O的半径.

  • 题型:14
  • 难度:中等
  • 人气:1421
20、

如图,E是正方形ABCD中CD边上任意一点.

(1)以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形;
(2)在BC边上画一点F,使△CFE的周长等于正方形ABCD的周长的一半,请简要说明你取该点的理由.

  • 题型:14
  • 难度:中等
  • 人气:989
21、

如图,某建筑物的截面可以视作由两条线段AB,BC和一条曲线围成的封闭的平面图形.已知AB⊥BC,曲线是以点D为顶点的抛物线的一部分,BC=6m,点D到BC,AB的距离分别为4m和2m.

(1)请以BC所在直线为x轴(射线BC的方向为正方向),AB所在直线为y轴建立平面直角坐标系,求出抛物线的解析式,并直接写出自变量的取值范围;
(2)求AB的长.

  • 题型:14
  • 难度:较难
  • 人气:1874
22、

某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100﹣x)件.设这段时间内售出该商品的利润为y元.
(1)直接写出利润y与售价x之间的函数关系式;
(2)当售价为多少元时,利润可达1000元;
(3)应如何定价才能使利润最大?

  • 题型:14
  • 难度:中等
  • 人气:899
23、

如图,△ABC为等边三角形.O为BC的中垂线AH上的动点,⊙O经过B,C两点,D为弧上一点,D,A两点在BC边异侧,连接AD,BD,CD.

(1)如图1,若⊙O经过点A,求证:BD+CD=AD;
(2)如图2,圆心O在BD上,若∠BAD=45°;求∠ADB的度数;
(3)如图3,若AH=OH,求证:BD2+CD2=AD2

  • 题型:14
  • 难度:较难
  • 人气:703
24、

如图,抛物线y=(x+m)2+m,与直线y=﹣x相交于E,C两点(点E在点C的左边),抛物线与x轴交于A,B两点(点A在点B的左边).△ABC的外接圆⊙H与直线y=﹣x相交于点D.

(1)若抛物线与y轴的交点坐标为(0,2),求m的值;
(2)求证:⊙H与直线y=1相切;
(3)若DE=2EC,求⊙H的半径.

  • 题型:14
  • 难度:较难
  • 人气:1579