优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试卷 / 初中数学 / 试卷选题
  • 2022-01-06
  • 题量:26
  • 年级:九年级
  • 类型:中考模拟
  • 浏览:1236

河北省石家庄市栾城县中考一模数学试卷

1、

实数a在数轴上的位置如图所示,则下列说法不正确的是(     )

A.a的相反数大于2 B.a的相反数是2
C.|a|>2 D.2a<0
  • 题型:1
  • 难度:中等
  • 人气:940
2、

下列各式成立的是(     )

A.2<<3 B.(2+5)2=22+52
C.m(m+b)=m2+b D.
  • 题型:1
  • 难度:中等
  • 人气:1459
3、

把一条弯曲的公路改成直道,可以缩短路程,用几何知识解释其道理,正确的是(     )

A.两点确定一条直线 B.两点之间线段最短
C.垂线段最短 D.三角形两边之和大于第三边
  • 题型:1
  • 难度:中等
  • 人气:1597
4、

平行四边形ABCD与等边△AEF如图放置,如果∠B=45°,则∠BAE的大小是(   )

A.75° B.70° C.65° D.60°
  • 题型:1
  • 难度:中等
  • 人气:263
5、

如图所示.有下列说法:
①起跑后1小时内,甲在乙的前面;
②第1小时两人都跑了10千米;
③甲比乙先到达终点;
④两人都跑了20千米.其中正确的说法有(     )

A.1个 B.2个 C.3个 D.4个
  • 题型:1
  • 难度:中等
  • 人气:643
6、

如图是一个三棱柱的展开图.若AD=10,CD=2,则AB的长度可以是(    )

A.2 B.3 C.4 D.5
  • 题型:1
  • 难度:中等
  • 人气:2140
7、

已知有一组数据1,2,m,3,4,其中m是方程的解,那么这组数据的中位数、众数分别是(     )

A.2,2 B.2,3 C.3,4 D.4,4
  • 题型:1
  • 难度:中等
  • 人气:1623
8、

小王去早市为餐馆选购蔬菜,他指着标价为每斤3元的豆角问摊主:“这豆角能便宜吗?”摊主:“多买按八折,你要多少斤?”小王报了数量后摊主同意按八折卖给小王,并说:“之前一人只比你少买5斤就是按标价,还比你多花了3元呢!”小王购买豆角的数量是(     )

A.25斤 B.20斤 C.30斤 D.15斤
  • 题型:1
  • 难度:中等
  • 人气:248
9、

如图,AB,CD分别是⊙O的弦和直径,AB⊥CD于点E,若CD=10,AB=8,则sin∠ACD的值为(     )

A.30° B. C. D.2
  • 题型:1
  • 难度:中等
  • 人气:1970
10、

如图,将抛物线l:y=ax2-2x+a2-4(a为常数)向左并向上平移,使顶点Q的对应点Q′,抛物线l与x轴的右交点P的对应点P′分别在两坐标轴上,则抛物线l与x轴的交点E的对应点的坐标为(     )

A.(-1, B.(0,0) C.(-,1) D.(-,0)
  • 题型:1
  • 难度:中等
  • 人气:2077
11、

甲,乙,丙三位先生是同一家公司的职员,他们的夫人,M,N,P也都是这家公司的职员,知情者介绍说:“M的丈夫是乙的好友,并在三位先生中最年轻;丙的年龄比P的丈夫大”.根据该知情者提供的信息,我们可以推出三对夫妇分别是(     )

A.甲-M,乙-N,丙-P B.甲-M,乙-P,丙-N
C.甲-N,乙-P,丙-M D.甲-P,乙-N,丙-M
  • 题型:1
  • 难度:中等
  • 人气:1907
12、

如图,已知平行四边形ABCD中,AB=5,BC=8,cosB=,点E是BC边上的动点,当以CE为半径的圆C与边AD不相交时,半径CE的取值范围是(   )

A.0<CE≤8 B.0<CE≤5
C.0<CE<3或5<CE≤8 D.3<CE≤5
  • 题型:1
  • 难度:中等
  • 人气:1960
13、

设min{x,y}表示x,y两个数中的最小值,例如min{1,2}=1,min{7,5}=5,则关于x的一次函数y=min{2x,x+1}可以表示为(     )

A.y="2x" B.y=x+1
C. D.
  • 题型:1
  • 难度:中等
  • 人气:458
14、

如图,在质地和颜色都相同的三张卡片的正面分别写有-2,-1,1,将三张卡片背面朝上洗匀,从中抽出一张,并记为x,然后从余下的两张中再抽出一张,记为y,则点(x,y)在直线y=-x-1上方的概率为(     )

A. B. C. D.1
  • 题型:1
  • 难度:中等
  • 人气:1470
15、

如图,已知在矩形ABCD中,AB=4,BC=2,点M,E在AD上,点F在边AB上,并且DM=1,现将△AEF沿着直线EF折叠,使点A落在边CD上的点P处,则当PB+PM的和最小时,ME的长度为(     )

A. B. C. D.
  • 题型:1
  • 难度:中等
  • 人气:242
16、

下列说法:
①-ax2-4a=-a(x+2)(x-2);
②函数y=自变量取值范围是x≥3;
=-1+
④不等式组的整数解为x=0,1,2;
⑤两组数据1、2、3、4、5与6、7、8、9、10的波动程度相同;
⑥双曲线y=与抛物线y=x2-1只有一个交点.
其中正确的是(     )

A.①②③ B.③④⑤ C.④⑤ D.④⑤⑥
  • 题型:1
  • 难度:中等
  • 人气:1765
17、

已知(x-1)2=ax2+bx+c,则a+b+c的值为            .

  • 题型:2
  • 难度:中等
  • 人气:1977
18、

网购悄然盛行,我国2012年网购交易额为1.26万亿人民币,2014年我国网购交易额达到了2.8万亿人民币.如果设2013年、2014年网购交易额的平均增长率为x,则依题意可得关于x的一元二次方程为                                .

  • 题型:2
  • 难度:较易
  • 人气:1986
19、

如图,点G是正方形ABCD的AB边的中点,点E、F在对角线AC上,并且AE=EF=FC,如果AB=2,则BF+GE=              

  • 题型:2
  • 难度:中等
  • 人气:535
20、

如图,抛物线y=x2-x+3与x轴交于A,B两点,与y轴交于点C,点M的坐标为(2,1).以M为圆心,2为半径作⊙M.则下列说法正确的是                  (填序号).

①tan∠OAC=
②直线AC是⊙M的切线;
③⊙M过抛物线的顶点;
④点C到⊙M的最远距离为6;
⑤连接MC,MA,则△AOC与△AMC关于直线AC对称.

  • 题型:2
  • 难度:中等
  • 人气:971
21、

(1)已知一元二次方程x2-4x+m=0有唯一实数根,求的值;
(2)小明是这样完成“作∠MON的平分线”这项作业的:
“如图,①以O为圆心,任意长为半径画弧,分别交OM,ON于点A,B;②分别作线段OA,OB的垂直平分线l1,l2(垂足分别记为C,D),记l1与l2的交点为P;③作射线OP,则射线OP为∠MON的平分线.”
你认为小明的作法正确吗?如果正确,请你给证明,如果不正确,请指出错在哪里.

  • 题型:14
  • 难度:较易
  • 人气:1612
22、

(1)如图1,已知△ABC三个顶点的坐标分别为A(1,4)、B(4,1)、C(4,4),若双曲线y=(x>0)与△ABC有公共点,则k的取值范围是              
(2)把图1中的△ABC沿直线AB翻折后得到△ABC1,若双曲线y=(x>0)与△ABC1有公共点,求m的取值范围;
小明借助一元二次方程根的判断式圆满地解决了这个问题,小芳借助二次函数模型也圆满地解决了这个问题.请你先在图2中画出△ABC1,再写出自己的解答过程.
(3)如图3,已知点A为(1,2),点B为(4,1),若双曲线y=(x>0)与线段AB有公共点,则n的取值范围是              

  • 题型:2
  • 难度:中等
  • 人气:362
23、

小锋家有一块四边形形状的空地(如图,四边形ABCD),其中AD∥BC,BC=1.6m,AD=5.5m,CD=5.2m,∠C=90°,∠A=53°.小锋的爸爸想买一辆长4.9m,宽1.9m的汽车停放在这块空地上,让小锋算算是否可行.
小锋设计了两种方案,如图1和图2所示.

(1)请你通过计算说明小锋的两种设计方案是否合理;
(2)请你利用图3再设计一种有别于小锋的可行性方案,并说明理由.
(参考数据:sin53°=0.8,cos53°=0.6,tan53°=

  • 题型:14
  • 难度:较难
  • 人气:1019
24、

在学统计知识时,老师留的作业是:“请联系自己身边的事物,用所学的统计知识编制一道统计题.”小明就以他们小区的超市每天卖面包的情景编制了如下题目:
某小区超市一段时间每天订购80个面包进行销售,每售出1个面包获利润0.5元,未售出的每个专损0.3元.
(1)若今后每天售出的面包个数用x(0<x≤80)表示,每天销售面包的利润用y(元)表示,写出y与x的函数关系式;
(2)小明连续m天对该超市的面包销量进行统计,并制成了频数分别直方图(每个组距包含左边的数,但不包含右边的数)和扇形统计图,如图1、图2所示,请根据两图提供的信息计算在m天内日销售利润少于32元的天数;

(3)如图(2)中m天内日销售面包个数在70≤x<80这个组内的销售情况如下表:

销售量/个
70
72
73
75
78
79
天数
1
2
3
4
3
2

请计算该组内平均每天销售面包的个数.

  • 题型:14
  • 难度:中等
  • 人气:365
25、

如图,已知两条直线a∥b,直线a、b间的距离为h,点M、N在直线a上,MN=x;点P在直线b上,并且x+h=40.

(1)记△PMN的面积为S,
①求S与x的函数关系,并求出MN的长为多少时△PMN的面积最大?最大面积是多少?
②当△PMN的面积最大时,能求出∠PMN的正切值吗?为什么?
(2)请你用尺规作图的方法确定△PMN的周长最小时点P的位置(要求不写作法,但保留作图痕迹);并判断△PMN的形状;
(3)请你在(2)②中得到的△PMN内求一点P,使得AP+AM+AN的和最小,求出AP+AM+AN和的最小值.

  • 题型:14
  • 难度:中等
  • 人气:2072
26、

已知,在矩形ABCD中,AB=6,BC=8,将矩形ABCD绕点D按顺时针方向旋转,得到矩形A′B′C′D′,直线DA′,B′C′分别与直线BC相交于点P,Q.

(1)①如图1,当矩形A′B′C′D的顶点B′落在射线DC上时           
②如图2,当矩形A′B′C′D的顶点B′落在线段BC的延长线上时,DP=            
(2)①如图3,当点P位于线段BC上时,求证:DP=PQ;
②在矩形ABCD旋转过程中(旋转角0°<α≤90°),请直接写出BP=BQ时,CP的长:       
(3)在矩形ABCD旋转过程中(旋转角45°<α≤180°),以点D,B′,P,Q为顶点的四边形能否成为平行四边形?如果能,请直接写出此时CP的长(或CP的取值范围);如果不能,请简要说明理由.

  • 题型:14
  • 难度:较难
  • 人气:599