山东省青岛市李沧区中考一模数学试卷
3的平方根是( )
A.9 | B. | C.﹣ | D.± |
- 题型:1
- 难度:中等
- 人气:1280
下列各图中,不是中心对称图形的是( )
- 题型:1
- 难度:中等
- 人气:206
右边几何体的俯视图是( )
- 题型:1
- 难度:中等
- 人气:964
某射击队要从四名运动员中选拔一名运动员参加比赛,选拔赛中每名队员的平均成绩与方差S2如下表所示,如果要选择一个成绩高且发挥稳定的人参赛,则应该选( )
选手 |
甲 |
乙 |
丙 |
丁 |
平均数 |
8.5 |
9 |
9 |
8.5 |
方差S2 |
1 |
1.2 |
1 |
1.3 |
A.甲 B.乙 C.丙 D.丁
- 题型:1
- 难度:中等
- 人气:698
函数(a≠0)与y=a(x﹣1)(a≠0)在同一坐标系中的大致图象是( )
- 题型:1
- 难度:中等
- 人气:982
如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为( )
A.1 | B.1或5 | C.3 | D.5 |
- 题型:1
- 难度:中等
- 人气:522
如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是( )
A.①② | B.②③ | C.①③ | D.①④ |
- 题型:1
- 难度:中等
- 人气:1346
计算:(﹣1)0+|﹣4|﹣= .
- 题型:2
- 难度:中等
- 人气:1400
“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具,某运动商城的自行车销售量自2015年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆,若该商城自2015起每个月自行车销量的月平均增长率相同,求月平均增长率.若设月平均增长率为x,由题意可得方程: .
- 题型:2
- 难度:中等
- 人气:495
如图,过点(0,3)的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是 .
- 题型:2
- 难度:中等
- 人气:1345
如图,在矩形ABCD中,AB=,AD=1,把该矩形绕点A顺时针旋转α度得矩形AB′C′D′,点C′落在AB的延长线上,则图中阴影部分的面积是 .
- 题型:2
- 难度:中等
- 人气:1564
如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是 .
- 题型:2
- 难度:中等
- 人气:2095
如图,是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为5m的半圆,其边缘AB=CD=20cm,小明要在AB上选取一点E,能够使他从点D滑到点E再到点C的滑行距离最短,则他滑行的最短距离为 m.(π取3)
- 题型:2
- 难度:较难
- 人气:1019
如图,有分别过A、B两个加油站的公路l1、l2相交于点O,现准备在∠AOB内建一个油库,要求油库的位置点P满足到A、B两个加油站的距离相等,而且P到两条公路l1、l2的距离也相等.请用尺规作图作出点P(不写作法,保留作图痕迹)
- 题型:14
- 难度:中等
- 人气:1591
计算(1)化简:(2)解不等式组:.
- 题型:14
- 难度:中等
- 人气:1237
去年5月31日世界卫生组织发起的第25个“世界无烟日”,为了更好的宣传吸烟的危害,某中学八年级一半数学兴趣小组设计了如下调查问卷,在五四广场随机调查了部分吸烟人群,并将调查结果绘制成统计图.
(1)本次接受调查的中人数是 人,并把条形统计图补充完整.
(2)在扇形统计图中,E选项所在扇形的圆心角的度数是 .
(3)若青岛市约有烟民14万人,求对吸烟有害持“无所谓”态度的约有多少人.
- 题型:14
- 难度:较易
- 人气:1342
小明、小芳做一个“配色”的游戏.右图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色,这种情况下小芳获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其它情况下不分胜负.
(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;
(2)此游戏的规则,对小明、小芳公平吗?试说明理由.
- 题型:14
- 难度:中等
- 人气:797
某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,求该种干果的第一次进价是每千克多少元?
- 题型:14
- 难度:中等
- 人气:1294
如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在OP上滑动,将窗户OM按图示方向向内旋转35°到达ON位置,此时,点A、C的对应位置分别是点B、D.测量出∠ODB为25°,点D到点O的距离为30cm.
(1)求B点到OP的距离;
(2)求滑动支架的长.
(结果精确到1cm.参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)
- 题型:14
- 难度:中等
- 人气:1984
如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.
(1)求证:△BOE≌△DOF;
(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.
- 题型:14
- 难度:中等
- 人气:1430
某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)
(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;
(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?
(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?
- 题型:14
- 难度:中等
- 人气:2097
【问题情境】
张老师给爱好学习的小林和小兰提出这样一个问题:如图①,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.
小林的证明思路是:如图②,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
小兰的证明思路是:如图②,过点P作PG⊥CF,垂足为G,通过证明四边形PDFG是矩形,
可得:PD=GF,PE=CG,则PD+PE=CF.
【变式探究】如图③,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;
【结论运用】请运用上述解答中所积累的经验和方法完成下列两题:
如图④,在平面直角坐标系中有两条直线l1:y=x+3、l2:y=﹣3x+3,若l2上的一点M到l1的距离是1,请运用上述的结论求出点M的坐标.
- 题型:14
- 难度:较难
- 人气:1411
如图①,四边形ABCD中,AD∥BC,DC⊥BC,AD=6cm,DC=8cm,BC=12cm.动点M在CB上运动,从C点出发到B点,速度每秒2cm;动点N在BA上运动,从B点出发到A点,速度每秒1cm.两个动点同时出发,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒).
(1)求线段AB的长.
(2)当t为何值时,MN∥CD?
(3)设三角形DMN的面积为S,求S与t之间的函数关系式.
(4)如图②,连接BD,是否存在某一时刻t,使MN与BD互相垂直?若存在,求出这时的t值;若不存在,请说明理由.
- 题型:14
- 难度:较难
- 人气:1772