2019年全国统一高考理科数学试卷(天津卷)
设集合 ,则 ( )
A. |
|
B. |
|
C. |
|
D. |
|
- 题型:1
- 难度:中等
- 人气:111
设变量 满足约束条件 ,则目标函数 的最大值为( )
A. |
2 |
B. |
3 |
C. |
5 |
D. |
6 |
- 题型:1
- 难度:中等
- 人气:118
设 ,则" "是" "的( )
A. |
充分而不必要条件 |
B. |
必要而不充分条件 |
C. |
充要条件 |
D. |
既不充分也不必要条件 |
- 题型:1
- 难度:中等
- 人气:131
阅读下边的程序框图,运行相应的程序,输出 的值为( )
A. |
5 |
B. |
8 |
C. |
24 |
D. |
29 |
- 题型:1
- 难度:中等
- 人气:144
已知抛物线 的焦点为 ,准线为 ,若 与双曲线 的两条渐近线分别交于点 和点 ,且 ( 为原点),则双曲线的离心率为( )
A. |
|
B. |
|
C. |
|
D. |
|
- 题型:1
- 难度:中等
- 人气:147
已知 , , ,则 的大小关系为( )
A. |
|
B. |
|
C. |
|
D. |
|
- 题型:1
- 难度:中等
- 人气:166
已知函数 是奇函数,将 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为 .若 的最小正周期为 ,且 ,则 ( )
A. |
|
B. |
|
C. |
|
D. |
|
- 题型:1
- 难度:中等
- 人气:152
已知 ,设函数 若关于 的不等式 在 上恒成立,则 的取值范围为( )
A. |
|
B. |
|
C. |
|
D. |
|
- 题型:1
- 难度:中等
- 人气:188
是虚数单位,则 的值为_____________.
- 题型:2
- 难度:中等
- 人气:103
的展开式中的常数项为_____________.
- 题型:2
- 难度:中等
- 人气:126
已知四棱锥的底面是边长为 的正方形,侧棱长均为 .若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.
- 题型:2
- 难度:中等
- 人气:112
设 ,直线 和圆 ( 为参数)相切,则 的值为_____________.
- 题型:2
- 难度:中等
- 人气:122
设 ,则 的最小值为_____________.
- 题型:2
- 难度:中等
- 人气:100
在四边形 中, ,点 在线段 的延长线上,且 ,则 _____________.
- 题型:2
- 难度:中等
- 人气:121
在 中,内角 所对的边分别为 .已知 , .
(Ⅰ)求 的值;
(Ⅱ)求 的值.
- 题型:14
- 难度:中等
- 人气:147
设甲、乙两位同学上学期间,每天7:30之前到校的概率均为 .假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.
(Ⅰ)用 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量 的分布列和数学期望;
(Ⅱ)设 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件 发生的概率.
- 题型:2
- 难度:中等
- 人气:150
如图, 平面 , , .
(Ⅰ)求证: 平面 ;
(Ⅱ)求直线 与平面 所成角的正弦值;
(Ⅲ)若二面角 的余弦值为 ,求线段 的长.
- 题型:2
- 难度:中等
- 人气:139
设椭圆 的左焦点为 ,上顶点为 .已知椭圆的短轴长为4,离心率为 .
(Ⅰ)求椭圆的方程;
(Ⅱ)设点 在椭圆上,且异于椭圆的上、下顶点,点 为直线 与 轴的交点,点 在 轴的负半轴上.若 ( 为原点),且 ,求直线 的斜率.
- 题型:2
- 难度:中等
- 人气:176
设 是等差数列, 是等比数列.已知 .
(Ⅰ)求 和 的通项公式;
(Ⅱ)设数列 满足 其中 .
(i)求数列 的通项公式;
(ii)求 .
- 题型:2
- 难度:中等
- 人气:160
设函数 为 的导函数.
(Ⅰ)求 的单调区间;
(Ⅱ)当 时,证明 ;
(Ⅲ)设 为函数 在区间 内的零点,其中 ,证明 .
- 题型:2
- 难度:较难
- 人气:184