优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试卷 / 初中数学 / 试卷选题
  • 2020-03-18
  • 题量:25
  • 年级:九年级
  • 类型:期末考试
  • 浏览:555

[北京]2011-2012学年北京市西城区九年级下学期期末检测数学卷

1、

若方程x2-5x=0的一个根是a,则a2-5a+2的值为(    )

A.-2 B.0 C.2 D.4
  • 题型:1
  • 难度:较易
  • 人气:2013
2、

如图,⊙O的半径OA等于5,半径OC与弦AB垂直,垂足为D,若OD=3,则弦AB的长为(    )

A.10 B.8 C.6 D.4
  • 题型:1
  • 难度:较易
  • 人气:1475
3、

将抛物线y=2x2经过怎样的平移可得到抛物线y=2(x+3)2+4?(    )

A.先向左平移3个单位,再向上平移4个单位
B.先向左平移3个单位,再向下平移4个单位
C.先向右平移3个单位,再向上平移4个单位
D.先向右平移3个单位,再向下平移4个单位
  • 题型:1
  • 难度:较易
  • 人气:754
4、

小莉站在离一棵树水平距离为a米的地方,用一块含30°的直角三角板按如图所示的方式测量这棵树的高度,已知小莉的眼睛离地面的高度是1.5米,那么她测得这棵树的高度为(    )

A. B.
C. D.
  • 题型:1
  • 难度:较易
  • 人气:1245
5、

如图,以某点为位似中心,将△AOB进行位似变换得到△CDE,记△AOB与△CDE对应边的比为k,则位似中心的坐标和k的值分别为(    )

A.(0,0),2 B.
C.(2,2),2 D.(2,2),3
  • 题型:1
  • 难度:较易
  • 人气:1510
6、

将抛物线y=x2+1绕原点O族转180°,则族转后的抛物线的解析式为:(    )

A.y=-x2 B.y=-x2+1
C.y=x2-1 D.y=-x2-1
  • 题型:1
  • 难度:较易
  • 人气:425
7、

如图,PA、PB与⊙O相切,切点分别为A、B,PA=3,∠P=60°,若AC为⊙O的直径,则图中阴影部分的面积为(    )

A.       B.
C.        D.

  • 题型:1
  • 难度:较易
  • 人气:693
8、

已知b>0时,二次函数y=ax2+bx+a2-1的图象如下列四个图之一所示.

根据图分析,a的值等于(    )

A.-2 B.-1 C.1 D.2
  • 题型:1
  • 难度:较易
  • 人气:351
9、

若△ABC∽△DEF,且对应边BC与EF的比为2∶3,则△ABC与△DEF的
面积等于______.

  • 题型:2
  • 难度:较易
  • 人气:1122
10、

如图,⊙O的直径是AB,CD是⊙O的弦,基∠D=70°,则∠ABC等于______.

  • 题型:2
  • 难度:较易
  • 人气:932
11、

如图,∠ABC=90°,O为射线BC上一点,以点O为圆心,长为半径作⊙O,将射线BA绕点B按顺时针方向旋转至BA',若BA'与⊙O相切,则旋转的角度??(0°<??<180°)等于______.

  • 题型:2
  • 难度:较易
  • 人气:288
12、

等腰△ABC中,BC=8,若AB、AC的长是关于x的方程x2-10x+m=0的根,则m的值等于______.

  • 题型:2
  • 难度:较易
  • 人气:1481
13、

解方程:2x2-6x+1=0.

  • 题型:13
  • 难度:较易
  • 人气:243
14、

计算:

  • 题型:13
  • 难度:较易
  • 人气:278
15、

已知:关于x的方程x2+2x=3-4k有两个不相等的实数根(其中k为实数).
求k的取值范围;
若k为非负整数,求此时方程的根.

  • 题型:14
  • 难度:较易
  • 人气:1397
16、

已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,
使∠ADC=30°.

求证:DC是⊙O的切线;
若AB=2,求DC的长.

  • 题型:14
  • 难度:中等
  • 人气:891
17、

已知:如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.

求证:△ABD∽△CBA;
若DE∥AB交AC于点E,请再写出另一个与△ABD相似的三角形,并直接写出DE的长.

  • 题型:14
  • 难度:较易
  • 人气:857
18、

已知:如图,∠MAN=45°,B为AM上的一个定点.若点P在射线AN上,以P为圆心,PA为半径的圆与射AN的另一个交点为C.请确定⊙P的位置,使BC恰与⊙P相切.

画出⊙P;(不要求尺规作图,不要求写画法)
连结BC、BP并填空:
①∠ABC=______°;
②比较大小:∠ABP______∠CBP.(用“>”、“<”或“=”连接)

  • 题型:14
  • 难度:较易
  • 人气:1116
19、

已知抛物线y=ax2+bx+c经过点A(0,3)、B(4,3)、C(1,0).
填空:抛物线的对称轴为直线x=______,抛物线与x轴的另一个交点D的坐标为______;
求该抛物线的解析式.

  • 题型:14
  • 难度:较易
  • 人气:1998
20、

已知:如图,等腰△ABC中,AB=BC,AE⊥BC于E,EF⊥AB于F,若CE=2,,求EF的长.

  • 题型:14
  • 难度:较易
  • 人气:358
21、

某水果批发市场经销一种水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克这种水果在原售价的基础上每涨价1元,日销售量将减少20千克.
如果市场某天销售这种水果盈利了6 000元,同时顾客又得到了实惠,那么每千克这种水果涨了多少元?
设每千克这种水果涨价x元时(0<x≤25),市场每天销售这种水果所获利润为y元.若不考虑其它因素,单纯从经济角度看,每千克这种水果涨价多少元时,市场每天销售这种水果盈利最多?最多盈利多少元?

  • 题型:14
  • 难度:较易
  • 人气:1885
22、

已知:如图,△ABC中,AB=3,∠BAC=120°,AC=1,D为AB延长线上一点,BD=1,点P在∠BAC的平分线上,且满足△PAD是等边三角形.

求证:BC=BP;
求点C到BP的距离.

  • 题型:14
  • 难度:中等
  • 人气:401
23、

已知关于x的方程x2-2ax-a+2b=0,其中a、b为实数.
若此方程有一个根为2a(a<0),判断a与b的大小关系并说明理由;
若对于任何实数a,此方程都有实数根,求b的取值范围.

  • 题型:14
  • 难度:较易
  • 人气:1625
24、

已知:如图,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D,OC交AB于E.

求∠D的度数;
求证:AC2=AD·CE;
的值.

  • 题型:14
  • 难度:中等
  • 人气:2024
25、

已知:抛物线与x轴交于
点A(x1,0)、B(x2,0),且x1<1<x2
求A、B两点的坐标(用a表示);
设抛物线的顶点为C,求△ABC的面积;
若a是整数,P为线段AB上的一个动点(P点与A、B两点不重合),
在x轴上方作等边△APM和等边△BPN,记线段MN的中点为Q,求抛物线的
解析式及线段PQ的长的取值范围.

  • 题型:14
  • 难度:中等
  • 人气:315