优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试卷 / 初中数学 / 试卷选题
  • 2020-03-18
  • 题量:25
  • 年级:九年级
  • 类型:中考试卷
  • 浏览:1098

[广东]2012年初中毕业升学考试(广东省广州卷)数学

1、

实数3的倒数是【   】

A.﹣ B. C.﹣3 D.3
  • 题型:1
  • 难度:容易
  • 人气:1385
2、

将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为【   】

A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2 D.y=(x+1)2
  • 题型:1
  • 难度:容易
  • 人气:514
3、

一个几何体的三视图如图所示,则这个几何体是【   】

A.四棱锥 B.四棱柱 C.三棱锥 D.三棱柱
  • 题型:1
  • 难度:容易
  • 人气:2105
4、

下面的计算正确的是【   】

A.6a﹣5a=1 B.a+2a2=3a3 C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b
  • 题型:1
  • 难度:较易
  • 人气:2126
5、

如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是【   】

A.26 B.25 C.21 D.20
  • 题型:1
  • 难度:较易
  • 人气:444
6、

已知,则a+b=【   】

A.﹣8 B.﹣6 C.6 D.8
  • 题型:1
  • 难度:容易
  • 人气:1786
7、

在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是【   】

A. B. C. D.
  • 题型:1
  • 难度:较易
  • 人气:809
8、

已知a>b,若c是任意实数,则下列不等式中总是成立的是【   】

A.a+c<b+c B.a﹣c>b﹣c C.ac<bc D.ac>bc
  • 题型:1
  • 难度:容易
  • 人气:2069
9、

在平面中,下列命题为真命题的是【   】

A.四边相等的四边形是正方形 B.对角线相等的四边形是菱形  
C.四个角相等的四边形是矩形 D.对角线互相垂直的四边形是平行四边形
  • 题型:1
  • 难度:中等
  • 人气:743
10、

如图,正比例函数y1=k1x和反比例函数的图象交于A(﹣1,2)、B(1,﹣2)两点,若y1<y2,则x的取值范围是【   】

A.x<﹣1或x>1 B.x<﹣1或0<x<1 
C.﹣1<x<0或0<x<1 D.﹣1<x<0或x>1
  • 题型:1
  • 难度:较易
  • 人气:326
11、

已知∠ABC=30°,BD是∠ABC的平分线,则∠ABD=  ▲  度.

  • 题型:2
  • 难度:较易
  • 人气:1697
12、

不等式x﹣1≤10的解集是  ▲  

  • 题型:2
  • 难度:容易
  • 人气:507
13、

分解因式:a3﹣8a=  ▲  

  • 题型:2
  • 难度:容易
  • 人气:915
14、

如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为  ▲  

  • 题型:2
  • 难度:较易
  • 人气:1459
15、

)已知关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k值为
  ▲  

  • 题型:2
  • 难度:较易
  • 人气:299
16、

如图,在标有刻度的直线l上,从点A开始,
以AB=1为直径画半圆,记为第1个半圆;
以BC=2为直径画半圆,记为第2个半圆;
以CD=4为直径画半圆,记为第3个半圆;
以DE=8为直径画半圆,记为第4个半圆,
…按此规律,继续画半圆,则第4个半圆的面积是第3个半圆面积的  ▲  倍,第n个半圆的面积为  ▲  (结果保留π)

  • 题型:2
  • 难度:中等
  • 人气:1403
17、

解方程组

  • 题型:13
  • 难度:较易
  • 人气:533
18、

如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C.求证:BE=CD.

  • 题型:14
  • 难度:较易
  • 人气:462
19、

广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006﹣2010这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答:
(1)这五年的全年空气质量优良天数的中位数是   ,极差是   
(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是   年(填写年份).
(3)求这五年的全年空气质量优良天数的平均数.

  • 题型:14
  • 难度:中等
  • 人气:873
20、

已知(a≠b),求的值.

  • 题型:14
  • 难度:较易
  • 人气:878
21、

甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣1,3.乙袋中的三张卡片所标的数值为﹣2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标.
(1)用适当的方法写出点A(x,y)的所有情况.
(2)求点A落在第三象限的概率.

  • 题型:14
  • 难度:中等
  • 人气:1818
22、

如图,⊙P的圆心为P(﹣3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N在点M的上方.
(1)在图中作出⊙P关于y轴对称的⊙P′.根据作图直接写出⊙P′与直线MN的位置关系.
(2)若点N在(1)中的⊙P′上,求PN的长.21世纪教育网

  • 题型:14
  • 难度:中等
  • 人气:994
23、

某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨1.9元收费.如果超过20吨,未超过的部分按每吨1.9元收费,超过的部分按每吨2.8元收费.设某户每月用水量为x吨,应收水费为y元.
(1)分别写出每月用水量未超过20吨和超过20吨,y与x间的函数关系式.
(2)若该城市某户5月份水费平均为每吨2.2元,求该户5月份用水多少吨?

  • 题型:14
  • 难度:中等
  • 人气:1637
24、

如图,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.
(1)求点A、B的坐标;
(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;
(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.

  • 题型:14
  • 难度:中等
  • 人气:2046
25、

如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).
(1)当α=60°时,求CE的长;
(2)当60°<α<90°时,
①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.
②连接CF,当CE2﹣CF2取最大值时,求tan∠DCF的值.

  • 题型:14
  • 难度:中等
  • 人气:1088