优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试卷 / 初中数学 / 试卷选题
  • 2020-03-18
  • 题量:28
  • 年级:九年级
  • 类型:中考试卷
  • 浏览:610

[江苏]2008年初中毕业升学考试(江苏南京卷)数学

1、

﹣3的绝对值是(  )

A.3 B.﹣3 C. D.
  • 题型:1
  • 难度:容易
  • 人气:189
2、

2008年5月27日,北京2008年奥运会火炬接力传递活动在南京境内举行,火炬传递路线全程约12 900m,将12 900m用科学记数法表示应为(  )

A.0.129×105 B.1.29×104 C.12.9×103 D.129×102
  • 题型:1
  • 难度:较易
  • 人气:1586
3、

计算(ab23的结果是(  )

A.ab5 B.ab6 C.a3b5 D.a3b6
  • 题型:1
  • 难度:容易
  • 人气:1073
4、

2的平方根是(  )

A.4 B. C. D.
  • 题型:1
  • 难度:容易
  • 人气:1092
5、

已知反比例函数的图象经过点P(﹣2,1),则这个函数的图象位于(  )

A.第一、三象限 B.第二、三象限 C.第二、四象限 D.第三、四象限
  • 题型:1
  • 难度:容易
  • 人气:1813
6、

如图,将一张等腰梯形纸片沿中位线剪开,拼成一个新的图形,这个新的图形可以是下列图形中的(  )

A.三角形 B.平行四边形 C.矩形 D.正方形
  • 题型:1
  • 难度:较易
  • 人气:1367
7、

小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶(  )

A.0.5m B.0.55m C.0.6m D.2.2m
  • 题型:1
  • 难度:较易
  • 人气:400
8、

如图,⊙O是等边三角形ABC的外接圆,⊙O的半径为2,则等边三角形ABC的边长为(  )

A. B. C. D.
  • 题型:1
  • 难度:较易
  • 人气:1875
9、

超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间6分钟到7分钟表示>或等于6分钟而<7分钟,其它类同).这个时间段内顾客等待时间不少于6分钟的人数为     (  )

A.5 B.7 C.16 D.33
  • 题型:1
  • 难度:较易
  • 人气:496
10、

如图,已知⊙O的半径为1,AB与⊙O相切于点A,OB与⊙O交于点C,CD⊥OA,垂足为D,则cos∠AOB的值等于(  )
     

A.OD B.OA C.CD D.AB
  • 题型:1
  • 难度:较易
  • 人气:1112
11、

计算的结果是  .

  • 题型:2
  • 难度:较易
  • 人气:1650
12、

函数:的自变量x的取值范围是 

  • 题型:2
  • 难度:容易
  • 人气:2113
13、

已知⊙O1和⊙O2的半径分别为3cm和5cm,且它们内切,则圆心距O1O2等于  cm.

  • 题型:2
  • 难度:容易
  • 人气:2120
14、

若等腰三角形的一个外角为70°,则它的底角为  度.

  • 题型:2
  • 难度:中等
  • 人气:1959
15、

口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 0.3 

  • 题型:2
  • 难度:中等
  • 人气:1082
16、

如图,有一圆形展厅,在其圆形边缘上的点A处安装了一台监视器,它的监控角度是65度.为了监控整个展厅,最少需在圆形边缘上共安装这样的监视器  台.

  • 题型:2
  • 难度:中等
  • 人气:1672
17、

先化简,再求值:(2a+1)2﹣2(2a+1)+3,其中a=

  • 题型:14
  • 难度:中等
  • 人气:931
18、

解方程:

  • 题型:14
  • 难度:中等
  • 人气:1395
19、

解不等式组,并把解集在数轴上表示出来.

  • 题型:14
  • 难度:中等
  • 人气:942
20、

我国从2008年6月1日起执行“限塑令”.“限塑令”执行前,某校为了了解本校学生所在家庭使用塑料袋的数量情况,随机调查了10名学生所在家庭月使用塑料袋的数量,结果如下(单位:只):
65,70,85,75,85,79,74,91,81,95.
(1)计算这10名学生所在家庭平均月使用塑料袋多少只?
(2)“限塑令”执行后,家庭月使用塑料袋数量预计将减少50%.根据上面的计算结果,估计该校1 000名学生所在家庭月使用塑料袋可减少多少只?

  • 题型:14
  • 难度:中等
  • 人气:2164
21、

如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE.
求证:(1)△ABF≌△DCE;
(2)四边形ABCD是矩形.

  • 题型:14
  • 难度:中等
  • 人气:788
22、

如图,菱形ABCD(图1)与菱形EFGH(图2)的形状、大小完全相同.
(1)请从下列序号中选择正确选项的序号填写;
①点E,F,G,H;②点G,F,E,H;③点E,H,G,F;④点G,H,E,F.
如果图1经过一次平移后得到图2,那么点A,B,C,D对应点分别是  
如果图1经过一次轴对称后得到图2,那么点A,B,C,D对应点分别是  
如果图1经过一次旋转后得到图2,那么点A,B,C,D对应点分别是  
(2)①图1,图2关于点O成中心对称,请画出对称中心(保留画图痕迹,不写画法);
②写出两个图形成中心对称的一条性质:   .(可以结合所画图形叙述).

图1                          图2

  • 题型:14
  • 难度:中等
  • 人气:235
23、

如图,山顶建有一座铁塔,塔高CD=30m,某人在点A处测得塔底C的仰角为20°,塔顶D的仰角为23°,求此人距CD的水平距离AB.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364,sin23°≈0.391,cos23°≈0.921,tan23°≈0.424)

  • 题型:14
  • 难度:中等
  • 人气:1866
24、

小明和小颖做掷骰子的游戏,规则如下:
①游戏前,每人选一个数字;
②每次同时掷两枚均匀骰子;
③如果同时掷得的两枚骰子点数之和,与谁所选数字相同,那么谁就获胜.
(1)在下表中列出同时掷两枚均匀骰子所有可能出现的结果:
(2)小明选的数字是5,小颖选的数字是8.如果你也加入游戏,你会选什么数字,使自己获胜的概率比他们大请说明理由.

  • 题型:14
  • 难度:中等
  • 人气:187
25、

某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m宽的空地,其它三侧内墙各保留1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m2

  • 题型:14
  • 难度:中等
  • 人气:1363
26、

已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:

(1)求该二次函数的关系式;
(2)当x为何值时,y有最小值,最小值是多少?
(3)若A(m,y1),B(m+1,y2)两点都在该函数的图象上,试比较y1与y2的大小.

  • 题型:14
  • 难度:中等
  • 人气:247
27、

如图,已知⊙O的半径为6cm,射线PM经过点O,OP=10cm,射线PN与⊙O相切于点Q.A,B两点同时从点P出发,点A以5cm/s的速度沿射线PM方向运动,点B以4cm/s的速度沿射线PN方向运动.设运动时间为ts.
(1)求PQ的长;
(2)当t为何值时,直线AB与⊙O相切?

  • 题型:14
  • 难度:中等
  • 人气:1245
28、

一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象进行以下探究:
信息读取:
(1)甲、乙两地之间的距离为km;
(2)请解释图中点B的实际意义;
图象理解:
(3)求慢车和快车的速度;
(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;
问题解决:
(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?

  • 题型:14
  • 难度:中等
  • 人气:1623