优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试卷 / 高中数学 / 试卷选题
  • 2020-03-18
  • 题量:20
  • 年级:高三
  • 类型:月考试卷
  • 浏览:635

[北京]2013届北京市东城区高三12月联考理科数学试卷

1、

若集合,且,则集合可能是(   )

A.  B.  C.  D.
  • 题型:1
  • 难度:较易
  • 人气:1278
2、

复数在复平面上对应的点的坐标是(   )

A. B. C. D.
  • 题型:1
  • 难度:较易
  • 人气:1817
3、

已知是两条不同直线,是三个不同平面,下列命题中正确的是(   )

A. B.
C. D.
  • 题型:1
  • 难度:容易
  • 人气:1699
4、

一个棱锥的三视图如图(尺寸的长度单位为),则该棱锥的体积是(   )

A. B. C. D.

 

  • 题型:1
  • 难度:容易
  • 人气:878
5、

设变量满足约束条件,则目标函数的最大值为(   )

A. B. C. D.
  • 题型:1
  • 难度:容易
  • 人气:156
6、

已知数列为等比数列,,则的值为(   )

A. B. C. D.
  • 题型:1
  • 难度:较易
  • 人气:1908
7、

已知函数上是增函数,,若,则的取值范围是(   )

A. B.
C. D.
  • 题型:1
  • 难度:容易
  • 人气:1489
8、

分别为双曲线的左、右焦点.若在双曲线右支上存在点,满足,且到直线的距离等于双曲线的实轴长,则该双
曲线的渐近线方程为(   )

A. B. C. D.
  • 题型:1
  • 难度:容易
  • 人气:1864
9、

已知,且为第二象限角,则的值为            .

  • 题型:2
  • 难度:容易
  • 人气:587
10、

已知向量.若为实数,,则
的值为            .

  • 题型:2
  • 难度:较易
  • 人气:1160
11、

椭圆的焦点为,点在椭圆上,若
的大小为            .

  • 题型:2
  • 难度:较易
  • 人气:1628
12、

若曲线的某一切线与直线平行,则切点坐标
            ,切线方程为            .

  • 题型:2
  • 难度:较易
  • 人气:1204
13、

,则下列不等式对一切满足条件的恒成立的
            . (写出所有正确命题的编号).
;        ②;    ③
;    ⑤

  • 题型:2
  • 难度:容易
  • 人气:1036
14、

已知函数在区间内任取两个实数,且
不等式恒成立,则实数的取值范围为            .

  • 题型:2
  • 难度:容易
  • 人气:1738
15、

已知:在中, 分别为角所对的边,且角为锐角,

(Ⅰ)求的值;
(Ⅱ)当时,求的长.

  • 题型:14
  • 难度:较易
  • 人气:2107
16、

已知:函数的部分图象如图所示.

(Ⅰ)求 函 数的 解 析 式;
(Ⅱ)在△中,角的 对 边 分 别是,若的 取 值 范 围.

  • 题型:14
  • 难度:容易
  • 人气:1106
17、

已知:如图,在四棱锥中,四边形为正方形,,且中点.
(Ⅰ)证明://平面
(Ⅱ)证明:平面平面
(Ⅲ)求二面角的正弦值.

  • 题型:14
  • 难度:容易
  • 人气:369
18、

已知:数列的前项和为,且满足.
(Ⅰ)求:的值;
(Ⅱ)求:数列的通项公式;
(Ⅲ)若数列的前项和为,且满足,求数列
项和.

  • 题型:14
  • 难度:较易
  • 人气:2010
19、

已知:函数,其中.
(Ⅰ)若的极值点,求的值;
(Ⅱ)求的单调区间;
(Ⅲ)若上的最大值是,求的取值范围.

  • 题型:14
  • 难度:容易
  • 人气:1529
20、

已知椭圆的离心率为,椭圆短轴的一个端点与两个焦
(Ⅰ)求椭圆的方程;
(Ⅱ)已知动直线与椭圆相交于两点. ①若线段中点的
横坐标为,求斜率的值;②若点,求证:为定值.

  • 题型:14
  • 难度:较易
  • 人气:1781