优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试卷 / 高中数学 / 试卷选题
  • 2020-03-18
  • 题量:21
  • 年级:高三
  • 类型:期末考试
  • 浏览:801

[湖北]2013届湖北省武汉市武昌区高三上学期期末调研测试理科数学试卷

1、

复数(i为虚数单位)的值是(   )

A.-1 B.1 C.-i D.i
  • 题型:1
  • 难度:容易
  • 人气:1460
2、

命题“所有奇数的立方都是奇数”的否定是(   )

A.所有奇数的立方都不是奇数 B.不存在一个奇数,它的立方是偶数
C.存在一个奇数,它的立方是偶数 D.不存在一个奇数,它的立方是奇数
  • 题型:1
  • 难度:容易
  • 人气:431
3、

某天清晨,小明同学生病了,体温上升,吃过药后感觉好多了,中午时他的体温基本正常,但是下午他的体温又开始上升,直到半夜才感觉身上不那么发烫了.下面大致能反映出小明这一天(0时~ 24时)体温的变化情况的图是(   )

  • 题型:1
  • 难度:容易
  • 人气:1770
4、

已知数列{an}是等差数列,a1+a3+a5=105,a2+a4+a6=99,{an}的前n项和为Sn,则使得Sn达到最大的n是(   )

A.18 B.19 C.20 D.21
  • 题型:1
  • 难度:容易
  • 人气:585
5、

某多面体的三视图(单位:cm)如图所示,则此多面体的体积是(   )
                   

A. B.cm3 C.cm3 D.cm3
  • 题型:1
  • 难度:较易
  • 人气:2101
6、

已知a>b,二次三项式ax2 +2x +b≥0对于一切实数x恒成立,又,使成立,则的最小值为(   )

A.1 B. C.2 D.2
  • 题型:1
  • 难度:容易
  • 人气:1301
7、

过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是坐标原点,则|AF|·|BF|的最小值是(   )

A.2 B. C.4 D.2
  • 题型:1
  • 难度:较易
  • 人气:621
8、

已知变量x,y满足约束条件,则z=3|x|+y的取值范围为(   )

A.[-1,5] B.[1, 11] C.[5, 11] D.[-7, 11]
  • 题型:1
  • 难度:容易
  • 人气:938
9、

函数f(x)= cos2x在区间[-3,3]上的零点的个数为(   )

A.3 B.4 C.5 D.6
  • 题型:1
  • 难度:容易
  • 人气:1056
10、

O是锐角三角形ABC的外心,由O向边BC,CA,AB引垂线,垂足分别是D,E,F,给出下列命题:


=cosA:cosB:cosC;
,使得
以上命题正确的个数是(   )

A.1 B.2 C.3 D.4;
  • 题型:1
  • 难度:容易
  • 人气:328
11、

已知sin-3cos=0,则               

  • 题型:2
  • 难度:容易
  • 人气:1768
12、

执行如图所示的程序框图,输出的S的值为           

  • 题型:2
  • 难度:容易
  • 人气:1348
13、

已知a=4,则二项式(x2+5的展开式中x的系数为         

  • 题型:2
  • 难度:容易
  • 人气:604
14、

已知直线⊥平面,直线m平面,有下列命题:
⊥m;  ②∥m;
∥m;  ④⊥m
其中正确命题的序号是               

  • 题型:2
  • 难度:容易
  • 人气:193
15、

给出若干数字按下图所示排成倒三角形,其中第一行各数依次是l,2,3,…,2013,从第二行起每一个数都等于它“肩上”两个数之和,最后一行只有一个数M,则这个数M是        。  

  • 题型:2
  • 难度:容易
  • 人气:832
16、

(本小题满分12分)
已知函数f(x)=" cos(" 2x+)+sin2x.
(Ⅰ)求函数f(x)的最小正周期和值域;
(Ⅱ)在△ABC中,角A、B、C的对边分别为a、b、c,满足
2·=, 求△ABC的面积S.

  • 题型:14
  • 难度:容易
  • 人气:714
17、

(本小题满分12分)
某市一次全市高中男生身高统计调查数据显示:全市100 000名男生的身高服从正态分布N(168,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160 cm和184 cm之间,将测量结果按如下方式分成6组:第一组 [160,164],第二组[164,168],…,第6组[180,184],下图是按上述分组方法得到的频率分布直方图.

(Ⅰ)试评估该校高三年级男生在全市高中男生中的平均身高状况;
(Ⅱ)求这50名男生身高在172 cm以上(含172 cm)的人数;
(Ⅲ)在这50名男生身高在172 cm以上(含172 cm)的人中任意抽取2人,该2人中身高排名(从高到低)在全市前130名的人数记为,求的数学期望.
参考数据:
.则
=0.6826,
="0.9544,"
=0.9974.

  • 题型:14
  • 难度:容易
  • 人气:999
18、

(本小题满分12分)
已知数列{ an}的前n项和为Sn,且Sn=2an-l;数列{bn}满足bn-1=bn=bnbn-1(n≥2,n∈N*)b1=1.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求数列的前n项和T.

  • 题型:14
  • 难度:较易
  • 人气:998
19、

(本小题满分12分)
如图,在四棱锥S - ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,SA ="AB=BC" =2,AD =1.M是棱SB的中点.

(Ⅰ)求证:AM∥面SCD;
(Ⅱ)求面SCD与面SAB所成二面角的余弦值;
(Ⅲ)设点N是直线CD上的动点,MN与面SAB所成的角为,求sin的最大值,

  • 题型:14
  • 难度:容易
  • 人气:584
20、

设点P是圆x2 +y2 =4上任意一点,由点P向x轴作垂线PP0,垂足为Po,且
(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)设直线:y=kx+m(m≠0)与(Ⅰ)中的轨迹C交于不同的两点A,B.
(1)若直线OA,AB,OB的斜率成等比数列,求实数m的取值范围;
(2)若以AB为直径的圆过曲线C与x轴正半轴的交点Q,求证:直线过定点(Q点除外),并求出该定点的坐标.

  • 题型:14
  • 难度:容易
  • 人气:886
21、

已知函数f(x)=lnx+
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设mR,对任意的a∈(-l,1),总存在xo∈[1,e],使得不等式ma - (xo)<0成立,求实数m的取值范围;
(Ⅲ)证明:ln2 l+ 1n22,+…+ln2 n>∈N*).

  • 题型:14
  • 难度:容易
  • 人气:336