优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试卷 / 高中数学 / 试卷选题
  • 2020-03-18
  • 题量:22
  • 年级:高三
  • 类型:期末考试
  • 浏览:918

[上海]2013届上海市徐汇区高三上学期期末考试文科数学试卷

1、

方程组的增广矩阵是__________________.

  • 题型:2
  • 难度:较易
  • 人气:1129
2、

已知幂函数的图像过点,则此幂函数的解析式是________.

  • 题型:2
  • 难度:较易
  • 人气:1250
3、

,则___________.

  • 题型:2
  • 难度:较易
  • 人气:329
4、

若抛物线的焦点与双曲线的右焦点重合,则实数的值是      .

  • 题型:2
  • 难度:容易
  • 人气:1981
5、

函数的部分图像如右图所示,则  _________.

  • 题型:2
  • 难度:较易
  • 人气:1544
6、

是直线的一个方向向量,则直线的倾斜角的大小为________.
(结果用反三角函数值表示)

  • 题型:2
  • 难度:容易
  • 人气:417
7、

不等式的解为            .

  • 题型:2
  • 难度:容易
  • 人气:693
8、

高三(1)班班委会由4名男生和3名女生组成,现从中任选3人参加上海市某社区敬老服务工作,则选出的人中至少有一名女生的概率是      .(结果用最简分数表示)

  • 题型:2
  • 难度:较易
  • 人气:306
9、

如图所示的程序框图,输出的结果是_________.

  • 题型:2
  • 难度:容易
  • 人气:436
10、

数列的通项公式,前项和为,则=_____________.

  • 题型:2
  • 难度:较易
  • 人气:513
11、

边长为1的正方形中,的中点,在线段上运动,则的取值范围是____________.

  • 题型:2
  • 难度:容易
  • 人气:354
12、

函数,其中,若动直线与函数的图像有三个不同的交点,则实数的取值范围是______________.

  • 题型:2
  • 难度:容易
  • 人气:1071
13、

若平面向量满足 ,则的最大值为                   .

  • 题型:2
  • 难度:容易
  • 人气:1675
14、

下列排列数中,等于的是 (    )                       

A. B. C. D.
  • 题型:1
  • 难度:较易
  • 人气:1227
15、

中,“”是“”的(    )

A.充分非必要条件 B.必要非充分条件
C.充要条件 D.既不充分也不必要条件
  • 题型:1
  • 难度:较易
  • 人气:786
16、

若函数上单调递增,那么实数的取值范围是(    )

A. B. C. D.
  • 题型:1
  • 难度:容易
  • 人气:797
17、

对于直角坐标平面内的点(不是原点),的“对偶点”是指:满足且在射线上的那个点. 则圆心在原点的圆的对偶图形(    )

A.一定为圆 B.一定为椭圆
C.可能为圆,也可能为椭圆 D.既不是圆,也不是椭圆
  • 题型:1
  • 难度:较易
  • 人气:827
18、

(本题满分12分)
已知集合,实数使得集合满足
的取值范围.

  • 题型:14
  • 难度:较易
  • 人气:1281
19、

(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
已知函数=.
(1)判断函数的奇偶性,并证明;
(2)求的反函数,并求使得函数有零点的实数的取值范围.

  • 题型:14
  • 难度:容易
  • 人气:1426
20、

(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
(文)某种型号汽车的四个轮胎半径相同,均为,该车的底盘与轮胎中心在同一水平面上. 该车的涉水安全要求是:水面不能超过它的底盘高度. 如图所示:某处有一“坑形”地面,其中坑形成顶角为的等腰三角形,且,如果地面上有()高的积水(此时坑内全是水,其它因素忽略不计).
(1)当轮胎与同时接触时,求证:此轮胎露在水面外的高度(从轮胎最上部到水面的距离)为
(2) 假定该汽车能顺利通过这个坑(指汽车在过此坑时,符合涉水安全要求),求的最大值.
(精确到1cm).

  • 题型:14
  • 难度:容易
  • 人气:361
21、

(本题满分16分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分6分.
(文)已知椭圆的一个焦点为,点在椭圆上,点满足(其中为坐标原点), 过点作一斜率为的直线交椭圆于两点(其中点在轴上方,点在轴下方) .

(1)求椭圆的方程;
(2)若,求的面积;
(3)设点为点关于轴的对称点,判断的位置关系,并说明理由.

  • 题型:14
  • 难度:较易
  • 人气:927
22、

(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分8分.
(文)对于数列,从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列. 某同学在学习了这一个概念之后,打算研究首项为,公差为的无穷等差数列的子数列问题,为此,他取了其中第一项,第三项和第五项.
(1) 若成等比数列,求的值;
(2) 在, 的无穷等差数列中,是否存在无穷子数列,使得数列为等比数列?若存在,请给出数列的通项公式并证明;若不存在,说明理由;
(3) 他在研究过程中猜想了一个命题:“对于首项为正整数,公比为正整数()的无穷等比数  列,总可以找到一个子数列,使得构成等差数列”. 于是,他在数列中任取三项,由的大小关系去判断该命题是否正确. 他将得到什么结论?

  • 题型:14
  • 难度:容易
  • 人气:961