[浙江]2013年浙江省鄞州八校中考模拟测试数学试卷
的值等于( )
A.4 | B. | C. | D.2 |
- 题型:1
- 难度:容易
- 人气:606
据媒体报道,我国因环境问题造成的经济损失每年高达680 000 000元,这个数用科学记数法可表示为( ).
A. | B. | C. | D. |
- 题型:1
- 难度:较易
- 人气:768
计算的结果是( )
A. | B. | C. | D. |
- 题型:1
- 难度:容易
- 人气:1843
在Rt△ABC中,∠C=90°,AC=3,BC=4,那么cosB的值是 ( )
A. | B. | C. | D. |
- 题型:1
- 难度:较易
- 人气:562
如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去
当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3米 , CA=1米, 则树的高度为( )
A. 4.5米 | B. 6米 | C.3米 | D. 4米 |
- 题型:1
- 难度:较易
- 人气:815
如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为( )
A.r | B. | C. | D.3r |
- 题型:1
- 难度:较易
- 人气:822
小兰画了一个函数的图象如图,那么关于x的分式方程的解是( )
A.x=1 | B.x="2" | C.x="3" | D.x=4 |
- 题型:1
- 难度:中等
- 人气:1060
从长度分别为3、5、7、9的4条线段中任取3条作边,能组成三
角形的概率为( )
A. | B. | C. | D. |
- 题型:1
- 难度:较易
- 人气:1341
如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.点M和点N分别是l1和l2上的动点,MN沿l1和l2平移.⊙O的半径为1,∠1=60°.下列结论错误的是( ).
A. B.若MN与⊙O相切,则
C.l1和l2的距离为2 D.若∠MON=90°,则MN与⊙O相切
- 题型:1
- 难度:中等
- 人气:841
如图,已知A点坐标为(5,0),直线与y轴交于点B,连接AB,若∠a=75°,则b的值为 ( )
A.3 | B. | C. | D. |
- 题型:1
- 难度:中等
- 人气:787
如图,OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线(a<0)的图象上,则a的值为 ( )
A. | B. | C. | D. |
- 题型:1
- 难度:中等
- 人气:2088
如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下次沿顺时针方向跳两个点;若停在偶数点上,则下次沿逆时针方向跳一个点.若青蛙从5这点开始跳,则经过2012次后它停在哪个数对应的点上 ( )
A.1 | B.2 | C.3 | D.5 |
- 题型:1
- 难度:较易
- 人气:697
在函数中,自变量x的取值范围是 .
- 题型:2
- 难度:容易
- 人气:1112
已知关于x的方程的一个根是1,则k= .
- 题型:2
- 难度:较易
- 人气:1688
如图,在长为8,宽为4的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是 .
- 题型:2
- 难度:中等
- 人气:929
抛物线先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是
- 题型:2
- 难度:较易
- 人气:1007
如图,在中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ长度的最小值是
- 题型:2
- 难度:中等
- 人气:1445
如图,已知点A(0,2)、B( ,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连结AP,以AP为边在其左侧作等边△APQ ,连结PB、BA.若四边形ABPQ为梯形,则
(1)当AB为梯形的底时,点P的横坐标是 ;
(2)当AB为梯形的腰时,点P的横坐标是 .
- 题型:2
- 难度:中等
- 人气:1345
计算:
- 题型:13
- 难度:较易
- 人气:1193
先化简再求值:,其中.
- 题型:14
- 难度:较易
- 人气:1325
某中学为了了解学生体育活动情况,随即调查了720名初二学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”,利用所得的数据制成了扇形统计图和频数分布直方图.根据图示,解答下列问题:
(1)若在被调查的学生中随机选出一名学生测试其体育成绩,选出的是“每天锻炼超过1小时”的学生的概率是多少?
(2)“没时间”锻炼的人数是多少?并补全频数分布直方图;
(3)2012年宁波市区初二学生约为2万人,按此调查,可以估计2012年宁波市区初二学生中每天锻炼未超过1小时的学生约有多少万人?
(4)请根据以上结论谈谈你的看法.
- 题型:14
- 难度:中等
- 人气:1235
如图,AB为量角器(半圆O)的直径,等腰直角△BCD的斜边BD交量角器边缘于点G,直角边CD切量角器于读数为60°的点E处(即弧AE的度数为60°),第三边交量角器边缘于点F处.
(1)求量角器在点G处的读数α(0°<α<90°);
(2)若AB=10cm,求阴影部分面积.
- 题型:14
- 难度:中等
- 人气:2108
宁波滨海水产城一养殖专业户陈某承包了30亩水塘,分别养殖甲鱼和桂鱼.有关成本、销售额见下表:
(1) 2011年,陈某养殖甲鱼20亩,桂鱼10亩.求陈某这一年共收益多少万元? (收益=销售额-成本)
(2) 2011年,陈某继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2011年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?
(3) 已知甲鱼每亩需要饲料500kg,桂鱼每亩需要饲料700kg.根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每次装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需全部饲料比原计划减少了2次.求陈某原定的运输车辆每次可装载饲料多少kg?
- 题型:14
- 难度:中等
- 人气:1656
(1)动手操作:
如图①,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若∠ABE=20°,那么的度数为 。
(2)观察发现:
小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由.
(3)实践与运用:
将矩形纸片ABCD 按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大小。
- 题型:14
- 难度:中等
- 人气:862
如图,在平面直角坐标系中,二次函数y=ax2+6x+c的图象经过点A(4,0)、B(﹣1,0),与y轴交于点C,点D在线段OC上,OD=t,点E在第二象限,∠ADE=90°,tan∠DAE=,EF⊥OD,垂足为F.
(1)求这个二次函数的解析式;
(2)求线段EF、OF的长(用含t的代数式表示);
(3)当△ECA为直角三角形时,求t的值.
- 题型:14
- 难度:中等
- 人气:1439
在半径为4的⊙O中,点C是以AB为直径的半圆的中点,OD⊥AC,垂足为D,点E是射线AB上的任意一点,DF//AB,DF与CE相交于点F,设EF=,DF=.
(1) 如图1,当点E在射线OB上时,求关于的函数解析式,并写出自变量的取值范围;
(2) 如图2,当点F在⊙O上时,求线段DF的长;
(3) 如果以点E为圆心、EF为半径的圆与⊙O相切,求线段DF的长.
- 题型:14
- 难度:中等
- 人气:497