优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试卷 / 高中数学 / 试卷选题
  • 2020-03-18
  • 题量:20
  • 年级:高三
  • 类型:高考冲刺
  • 浏览:318

[北京]2013届北京市西城区高三二模理科数学试卷

1、

已知全集,集合,那么=  (     )

A. B. C. D.
  • 题型:1
  • 难度:较易
  • 人气:1138
2、

在复平面内,复数的对应点是的对应点是,则 (      )

A. B. C. D.
  • 题型:1
  • 难度:较易
  • 人气:1705
3、

在极坐标系中,圆心为,且过极点的圆的方程是  (       )

A. B. C. D.
  • 题型:1
  • 难度:较易
  • 人气:814
4、

如图所示的程序框图表示求算式“” 之值,则判断框内可以填入(       )

A.? B.? C.? D.?

  • 题型:1
  • 难度:容易
  • 人气:1008
5、

,则(       )

A. B. C. D.
  • 题型:1
  • 难度:较易
  • 人气:562
6、

对于直线和平面,使成立的一个充分条件是(       )

A. B.
C. D.
  • 题型:1
  • 难度:较易
  • 人气:299
7、

已知正六边形的边长是,一条抛物线恰好经过该六边形的四个顶点,则抛物线的焦点到准线的距离是(       )

A. B. C. D.
  • 题型:1
  • 难度:较易
  • 人气:988
8、

已知函数,其中表示不超过实数的最大整数.若关于的方程有三个不同的实根,则实数的取值范围是(       )

A. B.
C. D.
  • 题型:1
  • 难度:中等
  • 人气:994
9、

右图是甲,乙两组各名同学身高(单位:)数据的茎叶图.记甲,乙两组数据的平均数
依次为,则 ______. (填入:“”,“”,或“”)

  • 题型:2
  • 难度:较易
  • 人气:674
10、

的展开式中项的系数是______.(用数字作答)

  • 题型:2
  • 难度:较易
  • 人气:466
11、

在△中,,则______;△的面积是______.

  • 题型:2
  • 难度:中等
  • 人气:1614
12、

如图,是半圆的直径,的延长线上,与半圆相切于点.若,则______.

  • 题型:2
  • 难度:中等
  • 人气:1333
13、

在等差数列中,,则______;设,则数列的前项和______.

  • 题型:2
  • 难度:中等
  • 人气:1495
14、

已知正数满足,则的取值范围是______.

  • 题型:2
  • 难度:中等
  • 人气:1228
15、

如图,在直角坐标系中,角的顶点是原点,始边与轴正半轴重合,终边交单位圆于点,且.将角的终边按逆时针方向旋转,交单位圆于点.记

(Ⅰ)若,求
(Ⅱ)分别过轴的垂线,垂足依次为.记△ 的面积为,△的面积为.若,求角的值.

  • 题型:14
  • 难度:中等
  • 人气:770
16、

某超市在节日期间进行有奖促销,凡在该超市购物满300元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励.
(Ⅰ)求1名顾客摸球3次停止摸奖的概率;
(Ⅱ)记为1名顾客摸奖获得的奖金数额,求随机变量的分布列和数学期望.

  • 题型:14
  • 难度:中等
  • 人气:1888
17、

如图1,四棱锥中,底面,面是直角梯形,为侧棱上一点.该四棱锥的俯视图和侧(左)视图如图2所示.   
(Ⅰ)证明:平面
(Ⅱ)证明:∥平面
(Ⅲ)线段上是否存在点,使所成角的余弦值为?若存在,找到所有符合要求的点,并求的长;若不存在,说明理由.

  • 题型:14
  • 难度:中等
  • 人气:2020
18、

如图,椭圆的左顶点为是椭圆上异于点的任意一点,点与点关于点对称.
(Ⅰ)若点的坐标为,求的值;
(Ⅱ)若椭圆上存在点,使得,求的取值范围.

  • 题型:14
  • 难度:较难
  • 人气:2025
19、

已知函数,其中
(Ⅰ)若,求曲线在点处的切线方程;
(Ⅱ)求在区间上的最大值和最小值.

  • 题型:14
  • 难度:较难
  • 人气:443
20、

已知集合是正整数的一个排列,函数
 对于,定义:,称的满意指数.排列为排列的生成列;排列为排列的母列.
(Ⅰ)当时,写出排列的生成列及排列的母列;
(Ⅱ)证明:若中两个不同排列,则它们的生成列也不同;
(Ⅲ)对于中的排列,定义变换:将排列从左至右第一个满意指数为负数的项调至首项,其它各项顺序不变,得到一个新的排列.证明:一定可以经过有限次变换将排列变换为各项满意指数均为非负数的排列.

  • 题型:14
  • 难度:中等
  • 人气:881