[贵州]2013年初中毕业升学考试(贵州贵阳卷)数学
3的倒数是
A.﹣3 | B.3 | C. | D. |
- 题型:1
- 难度:容易
- 人气:1368
2013年5月在贵阳召开的“第十五届中国科协年会”中,贵州省签下总金额达790亿元的项目,790亿元用科学记数法表示为
A.79×10亿元 | B.7.9×102亿元 | C.7.9×103亿元 | D.0.79×103亿元 |
- 题型:1
- 难度:较易
- 人气:481
如图,将直线l1沿着AB的方向平移得到直线l2,若∠1=50°,则∠2的度数是
A.40° | B.50° | C.90° | D.130° |
- 题型:1
- 难度:较易
- 人气:904
在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子作调查,以决定最终买哪种粽子.下面的调查数据中最值得关注的是
A.方差 | B.平均数 | C.中位数 | D.众数 |
- 题型:1
- 难度:较易
- 人气:1751
一个几何体的三视图如图所示,则这个几何体的位置是
A. | B. | C. | D. |
- 题型:1
- 难度:较易
- 人气:1943
某校学生小亮每天骑自行车上学时都要经过一个十字路口,设十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到绿灯的概率为,那么他遇到黄灯的概率为
A. | B. | C. | D. |
- 题型:1
- 难度:较易
- 人气:1658
如图,P是∠α的边OA上一点,点P的坐标为(12,5),则tanα等于
A. | B. | C. | D. |
- 题型:1
- 难度:较易
- 人气:567
如图,M是Rt△ABC的斜边BC上异于B、C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有
A.1条 B.2条 C.3条 D.4条
- 题型:1
- 难度:中等
- 人气:519
如图,在直径为AB的半圆O上有一动点P从A点出发,按顺时针方向绕半圆匀速运动到B点,然后再以相同的速度沿着直径回到A点停止,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是
A. | B. | C. | D. |
- 题型:1
- 难度:中等
- 人气:1354
在矩形ABCD中,AB=6,BC=4,有一个半径为1的硬币与边AB、AD相切,硬币从如图所示的位置开始,在矩形内沿着边AB、BC、CD、DA滚动到开始的位置为止,硬币自身滚动的圈数大约是
A.1圈 B.2圈 C.3圈 D.4圈
- 题型:1
- 难度:较易
- 人气:1576
方程3x+1=7的根是 .
- 题型:2
- 难度:较易
- 人气:158
在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球实验后,发现摸到白球的频率约为40%,估计袋中白球有 个.
- 题型:2
- 难度:较易
- 人气:1585
如图,AD、AC分别是⊙O的直径和弦,∠CAD=30°,B是AC上一点,BO⊥AD,垂足为O,BO=5cm,则CD等于 cm.
- 题型:2
- 难度:较易
- 人气:1500
直线y=ax+b(a>0)与双曲线相交于A(x1,y1),B(x2,y2)两点,则x1y1+x2y2的值为 .
- 题型:2
- 难度:较易
- 人气:923
已知二次函数y=x2+2mx+2,当x>2时,y的值随x值的增大而增大,则实数m的取值范围是 .
- 题型:2
- 难度:较易
- 人气:444
先化简,再求值:,其中x=1.
- 题型:14
- 难度:较易
- 人气:393
现有两组相同的扑克牌,每组两张,两张牌的牌面数字分别是2和3,从每组牌中各随机摸出一张牌,称为一次试验.
(1)小红与小明用一次试验做游戏,如果摸到的牌面数字相同小红获胜,否则小明获胜,请用列表法或画树状图的方法说明这个游戏是否公平?
(2)小丽认为:“在一次试验中,两张牌的牌面数字和可能为4、5、6三种情况,所以出现‘和为4’的概率是”,她的这种看法是否正确?说明理由.
- 题型:14
- 难度:中等
- 人气:213
在一次综合实践活动中,小明要测某地一座古塔AE的高度,如图,已知塔基AB的高为4m,他在C处测得塔基顶端B的仰角为30°,然后沿AC方向走5m到达D点,又测得塔顶E的仰角为50°.(人的身高忽略不计)
(1)求AC的距离;(结果保留根号)
(2)求塔高AE.(结果保留整数)
- 题型:14
- 难度:中等
- 人气:1158
贵阳市“有效学习儒家文化”课题于今年结题,在这次结题活动中,甲、乙两校师生共150人进行了汇报演出,小林将甲、乙两校参加各项演出的人数绘制成如下不完整的统计图表,根据提供的信息解答下列问题:
甲校参见汇报演出的师生人数统计表
|
百分比 |
人数 |
话剧 |
50% |
m |
演讲 |
12% |
6 |
其他 |
n |
19 |
(1)m= ,n= ;
(2)计算乙校的扇形统计图中“话剧”的圆心角度数;
(3)哪个学校参加“话剧”的师生人数多?说明理由.
- 题型:14
- 难度:中等
- 人气:736
已知:如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.
(1)求证:AE=EC;
(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.
- 题型:14
- 难度:中等
- 人气:1795
2010年底某市汽车拥有量为100万辆,而截止到2012年底,该市的汽车拥有量已达到144万辆.
(1)求2010年底至2012年底该市汽车拥有量的年平均增长率;
(2)该市交通部门为控制汽车拥有量的增长速度,要求到2013年底全市汽车拥有量不超过155.52万辆,预计2013年报废的汽车数量是2012年底汽车拥有量的10%,求2012年底至2013年底该市汽车拥有量的年增长率要控制在
什么范围才能达到要求.
- 题型:14
- 难度:中等
- 人气:1822
已知:如图,AB是⊙O的弦,⊙O的半径为10,OE、OF分别交AB于点E、F,OF的延长线交⊙O于点D,且AE=BF,∠EOF=60°.
(1)求证:△OEF是等边三角形;
(2)当AE=OE时,求阴影部分的面积.(结果保留根号和π)
- 题型:14
- 难度:中等
- 人气:1200
已知:直线过抛物线的顶点P,如图所示.
(1)顶点P的坐标是 ;
(2)若直线y=ax+b经过另一点A(0,11),求出该直线的表达式;
(3)在(2)的条件下,若有一条直线y=mx+n与直线y=ax+b关于x轴成轴对称,求直线y=mx+n与抛物线的交点坐标.
- 题型:14
- 难度:中等
- 人气:712
在△ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).
(1)当△ABC三边分别为6、8、9时,△ABC为 三角形;当△ABC三边分别为6、8、11时,△ABC为 三角形.
(2)猜想,当a2+b2 c2时,△ABC为锐角三角形;当a2+b2 c2时,△ABC为钝角三角形.
(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.
- 题型:14
- 难度:中等
- 人气:1622
如图,在平面直角坐标系中,有一条直线l:与x轴、y轴分别交于点M、N,一个高为3的等边三角形ABC,边BC在x轴上,将此三角形沿着x轴的正方向平移.
(1)在平移过程中,得到△A1B1C1,此时顶点A1恰落在直线l上,写出A1点的坐标 ;
(2)继续向右平移,得到△A2B2C2,此时它的外心P恰好落在直线l上,求P点的坐标;
(3)在直线l上是否存在这样的点,与(2)中的A2、B2、C2任意两点能同时构成三个等腰三角形?如果存在,求出点的坐标;如果不存在,说明理由.
- 题型:14
- 难度:较难
- 人气:938