优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试卷 / 初中数学 / 试卷选题
  • 2021-12-06
  • 题量:48
  • 年级:九年级
  • 类型:中考试卷
  • 浏览:119

2011年初中毕业升学考试(湖北黄冈卷)数学

1、

某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.
(1)求甲、乙两个班组平均每天各掘进多少米?
(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此旄工进度,能够比原来少用多少天完成任务?

  • 题型:14
  • 难度:较难
  • 人气:1503
2、

如图是一座人行天桥的引桥部分的示意图,上桥通道由两段互相平行并且与地面成37°角的楼梯AD、 BE和一段水平平台DE构成。已知天桥高度BC≈4.8米,引桥水平跨度AC=8米。

(1)求水平平台DE的长度;
(2)若与地面垂直的平台立枉MN的高度为3米,求两段楼梯AD与BE的长度之比。
(参考数据:取sin37°=0.60,cos37°=0.80,tan37°=0.75

  • 题型:14
  • 难度:较难
  • 人气:173
3、

使得函数值为零的自变量的值称为函数的零点。例如,对于函数,令y=0,可得x=1,我们就说1是函数的零点。
己知函数 (m为常数)。
(1)当=0时,求该函数的零点;
(2)证明:无论取何值,该函数总有两个零点;
(3)设函数的两个零点分别为,且,此时函数图象与x轴的交点分
别为A、B(点A在点B左侧),点M在直线上,当MA+MB最小时,求直线AM的函数解析式。

  • 题型:14
  • 难度:较难
  • 人气:332
4、

.如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角线APQ。当点P运动到原点O处时,记Q得位置为B。
(1)求点B的坐标;
(2)求证:当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值;
(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。

  • 题型:14
  • 难度:较难
  • 人气:1127
5、

下列各组数中,互为相反数的是(  )

A.2和﹣2 B.﹣2和
C.﹣2和 D.和2
  • 题型:1
  • 难度:较难
  • 人气:1803
6、

如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是(  )

A.6 B.5 C.4 D.3
  • 题型:1
  • 难度:较难
  • 人气:323
7、

下列各式能用完全平方公式进行分解因式的是(  )

A.x2+1 B.x2+2x﹣1
C.x2+x+1 D.x2+4x+4
  • 题型:1
  • 难度:较难
  • 人气:373
8、

有四包真空小包装火腿,每包以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是(  )

A.+2 B.﹣3
C.+3 D.+4
  • 题型:1
  • 难度:较难
  • 人气:515
9、

如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是(  )

A.30° B.25°
C.20° D.15°
  • 题型:1
  • 难度:较难
  • 人气:1301
10、

学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是(  )

A.0.1 B.0.15
C.0.25 D.0.3
  • 题型:1
  • 难度:较难
  • 人气:1866
11、

计算的结果为(  )

A. B.
C.﹣1 D.2
  • 题型:1
  • 难度:较难
  • 人气:696
12、

不等式组的解在数轴上表示为(  )

A. B.
C. D.
  • 题型:1
  • 难度:较难
  • 人气:368
13、

如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为(  )

A. 600 m B. 500 m
C. 400 m D. 300 m
  • 题型:1
  • 难度:较难
  • 人气:670
14、

如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是(  )

A.点(0,3) B.点(2,3)
C.点(5,1) D.点(6,1)
  • 题型:1
  • 难度:较难
  • 人气:1435
15、

“x与y的差”用代数式可以表示为_______

  • 题型:2
  • 难度:较难
  • 人气:892
16、

已知三角形的两边长为4,8,则第三边的长度可以是_______(写出一个即可).

  • 题型:2
  • 难度:较难
  • 人气:409
17、

在中国旅游日(5月19日),我市旅游部门对2011年第一季度游客在金华的旅游时间作抽样调查,统计如下:

旅游时间
当天往返
2~3天
4~7天
8~14天
半月以上
合计
人数(人)
76
120
80
19
5
300

若将统计情况制成扇形统计图,则表示旅游时间为“2~3天”的扇形圆心角的度数为_____

  • 题型:2
  • 难度:较难
  • 人气:192
18、

从﹣2,﹣1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是_______

  • 题型:2
  • 难度:较难
  • 人气:699
19、

如图,在?ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是_______.

  • 题型:2
  • 难度:较难
  • 人气:1893
20、

如图,将一块直角三角板OAB放在平面直角坐标系中,B(2,0),∠AOB=60°,点A在第一象限,过点A的双曲线为.在x轴上取一点P,过点P作直线OA的垂线l,以直线l为对称轴,线段OB经轴对称变换后的像是O´B´.
当点O´与点A重合时,点P的坐标是___________
设P(t,0),当O´B´与双曲线有交点时,t的取值范围是______________

  • 题型:2
  • 难度:较难
  • 人气:601
21、

计算:

  • 题型:13
  • 难度:较难
  • 人气:180
22、

已知2x﹣1=3,求代数式(x﹣3)2+2x(3+x)﹣7的值.

  • 题型:14
  • 难度:较难
  • 人气:753
23、

生活经验表明,靠墙摆放的梯子,当50°≤α≤70°时(α为梯子与地面所成的角),能够使人安全攀爬.现在有一长为6米的梯子AB,试求能够使人安全攀爬时,梯子的顶端能达到的最大高度AC.
(结果保留两个有效数字,sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)

  • 题型:14
  • 难度:较难
  • 人气:1381
24、

王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活98%.现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.
(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;
(2)试通过计算说明,哪个山上的杨梅产量较稳定?

  • 题型:14
  • 难度:较难
  • 人气:1151
25、

的倒数是________.

  • 题型:2
  • 难度:中等
  • 人气:1267
26、

分解因式8a2-2=____________________________.

  • 题型:2
  • 难度:中等
  • 人气:789
27、

要使式子有意义,则a的取值范围为_____________________.

  • 题型:2
  • 难度:中等
  • 人气:151
28、

如图:点A在双曲线上,ABx轴于B,且△AOB的面积SAOB=2,则k=______.

  • 题型:2
  • 难度:中等
  • 人气:588
29、

如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为_______.

  • 题型:2
  • 难度:中等
  • 人气:481
30、

如图,在△ABCEBC上的一点,EC=2BE,点DAC的中点,设△ABC
ADF、△BEF的面积分别为SABCSADFSBEF,且SABC=12,则SADF-SBEF=_________.

  • 题型:2
  • 难度:中等
  • 人气:510
31、

若关于xy的二元一次方程组的解满足,则a的取值范
围为______.

  • 题型:2
  • 难度:中等
  • 人气:2084
32、

如图,△ABC的外角∠ACD的平分线CP的内角∠ABC平分线BP交于点P,若
BPC=40°,则∠CAP=_______________.

  • 题型:2
  • 难度:中等
  • 人气:1670
33、

cos30°=
A          B       C        D

  • 题型:1
  • 难度:中等
  • 人气:1561
34、

计算
A2             B-2         C6             D10

  • 题型:1
  • 难度:中等
  • 人气:1372
35、

下列说法中
①一个角的两边分别垂直于另一个角的两边,则这两个角相等
②数据5,2,7,1,2,4的中位数是3,众数是2
③等腰梯形既是中心对称图形,又是轴对称图形
RtABC中,∠C=90°,两直角边ab分别是方程x2-7x+7=0的两个根,则AB边上
的中线长为
正确命题有
A0个        B1个        C2个        D3个

  • 题型:1
  • 难度:中等
  • 人气:704
36、

一个几何体的三视图如下:其中主视图都是腰长为4、底边为2的等腰三角形,
则这个几何体的侧面展开图的面积为
A        B       C       D
 

  • 题型:1
  • 难度:中等
  • 人气:1816
37、

如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD
则∠PCA=
A30°       B45°       C60°       D67.5°

  • 题型:1
  • 难度:中等
  • 人气:1001
38、

如图,把RtABC放在直角坐标系内,其中∠CAB=90°,BC=5,点AB的坐
标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线
BC扫过的面积为
A4                 B8                 C16               D

  • 题型:1
  • 难度:中等
  • 人气:1358
39、

已知函数,则使y=k成立的x值恰好有三个,则k的值

A0             B1             C2             D3

  • 题型:1
  • 难度:中等
  • 人气:1096
40、

解方程:

  • 题型:14
  • 难度:中等
  • 人气:1517
41、

为了加强食品安全管理,有关部门对某大型超市的甲、乙两种品牌食用
油共抽取18瓶进行检测,检测结果分成“优秀”、“合格”、“不合格”三个等级,数据处理
后制成以下折线统计图和扇形统计图.
⑴甲、乙两种品牌食用油各被抽取了多少瓶用于检测?
⑵在该超市购买一瓶乙品牌食用油,请估计能买到“优秀”等级的概率是多少?
   

  • 题型:14
  • 难度:中等
  • 人气:1066
42、

如图,在等腰三角形ABC中,∠ABC=90°,DAC边上中点,过D
点作DEDF,交ABE,交BCF,若AE=4,FC=3,求EF长.

  • 题型:14
  • 难度:中等
  • 人气:1325
43、

有3张扑克牌,分别是红桃3、红桃4和黑桃5.把牌洗匀后甲先抽取一
张,记下花色和数字后将牌放回,洗匀后乙再抽取一张.
⑴先后两次抽得的数字分别记为st,则︱st︱≥1的概率.
⑵甲、乙两人做游戏,现有两种方案.A方案:若两次抽得相同花色则甲胜,否则乙胜.B方案:若两次抽得数字和为奇数则甲胜,否则乙胜.
请问甲选择哪种方案胜率更高?

  • 题型:14
  • 难度:中等
  • 人气:450
44、

今年我省干旱灾情严重,甲地急需要抗旱用水15万吨,乙地13万吨.现
AB两水库各调出14万吨水支援甲、乙两地抗旱.从A地到甲地50千米,到乙地30
千米;从B地到甲地60千米,到乙地45千米.
⑴设从A水库调往甲地的水量为x万吨,完成下表





调出地

 



水量/万吨

 



调入地

 



总计
A
x
 
14
B
 
 
14
总计
15
13
28

⑵请设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨•千米)

  • 题型:14
  • 难度:中等
  • 人气:984
45、

如图,防洪大堤的横断面是梯形,背水坡AB的坡比(指坡面的铅直
高度与水平宽度的比).且AB="20" m.身高为1.7 m的小明站在大堤A点,测得高压电线杆
端点D的仰角为30°.已知地面CB宽30 m,求高压电线杆CD的高度(结果保留三个有
效数字,1.732).

  • 题型:14
  • 难度:中等
  • 人气:1288
46、

在圆内接四边形ABCD中,CD为∠BCA外角的平分线,F为弧AD上一点,BC=AF,延长DFBA的延长线交于E
⑴求证△ABD为等腰三角形.
⑵求证ACAF=DFFE

  • 题型:14
  • 难度:中等
  • 人气:2009
47、

我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对
该特产的销售投资收益为:每投入x万元,可获得利润(万元).当
地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项
目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中
拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的
3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x万元,
可获利润(万元)
⑴若不进行开发,求5年所获利润的最大值是多少?
⑵若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?
⑶根据⑴、⑵,该方案是否具有实施价值?

  • 题型:14
  • 难度:中等
  • 人气:1219
48、

如图所示,过点F(0,1)的直线y=kxb与抛物线交于M(x1
y1)和N(x2y2)两点(其中x1<0,x2<0).
⑴求b的值.
⑵求x1x2的值
⑶分别过MN作直线ly=-1的垂线,垂足分别是M1N1,判断△M1FN1的形状,并证明你的结论.
⑷对于过点F的任意直线MN,是否存在一条定直线m,使m与以MN为直径的圆相切.如果有,请法度出这条直线m的解析式;如果没有,请说明理由.

  • 题型:14
  • 难度:中等
  • 人气:1845