优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试卷 / 高中数学 / 试卷选题
  • 2020-03-18
  • 题量:21
  • 年级:高三
  • 类型:月考试卷
  • 浏览:1078

[江西]2014届江西稳派名校学术联盟高三12月调研理科数学试卷

1、

已知集合,集合(e为自然对数的底数)则M∩N=(   )

A. B. C. D.
  • 题型:1
  • 难度:较易
  • 人气:1099
2、

已知等比数列中,,且,则的值为(   )

A.4 B.-4 C.±4 D.±
  • 题型:1
  • 难度:较易
  • 人气:916
3、

如图所示是一个几何体的三视图,若该几何体的体积为,则主视图中三角形的高x的值为(   )

A. B. C.1 D.
  • 题型:1
  • 难度:较易
  • 人气:1841
4、

”是“”的(   )

A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
  • 题型:1
  • 难度:较易
  • 人气:1224
5、

已知函数轴和所围成的图形的面积为M,N=,则程序框图输出的S为(   )

A.1 B.2 C. D.0
  • 题型:1
  • 难度:中等
  • 人气:1630
6、

,则的大小关系是(   )

A. B.
C. D.与x的取值有关
  • 题型:1
  • 难度:较易
  • 人气:598
7、

已知实数x,y满足,则r的最小值为(   )

A. B.1 C. D.
  • 题型:1
  • 难度:中等
  • 人气:1270
8、

随着生活水平的提高,私家车已成为许多人的代步工具。某驾照培训机构仿照北京奥运会会徽设计了科目三路考的行驶路线,即从A点出发沿曲线段B→曲线段C→曲线段D,最后到达E点。某观察者站在点M观察练车场上匀速行驶的小车P的运动情况,设观察者从点A开始随车子运动变化的视角为∠AMP(),练车时间为t,则函数的图像大致为(   )

  • 题型:1
  • 难度:较易
  • 人气:1380
9、

对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”。已知直线,和圆C:的位置关系是“平行相交”,则b的取值范围为(   )

A. B.
C. D.
  • 题型:1
  • 难度:中等
  • 人气:1347
10、

函数,当时,恒成立,则的最大值是(   )

A.3 B. C.4 D.
  • 题型:1
  • 难度:中等
  • 人气:1716
11、

直线的倾斜角为,则的值为_________。

  • 题型:2
  • 难度:较易
  • 人气:1147
12、

在平面直角坐标系中,O是原点,是平面内的动点,若,则P点的轨迹方程是___________。

  • 题型:2
  • 难度:较易
  • 人气:820
13、

已知函数的图像关于直线对称,若,则不等式的解集是_________。

  • 题型:2
  • 难度:较难
  • 人气:1876
14、

在区间内图像不间断的函数满足,函数,且,又当时,有,则函数在区间内零点的个数是________。

  • 题型:2
  • 难度:较难
  • 人气:540
15、

将2n按如表的规律填在5列的数表中,设排在数表的第n行,第m列,则第m列中的前n个数的和=___________。

 








 
 








 





  • 题型:2
  • 难度:较难
  • 人气:1931
16、

已知a,b,c分别为△ABC三个内角A,B,C的对边,且
(Ⅰ)求B;
(2)若,求的值。

  • 题型:14
  • 难度:较难
  • 人气:1603
17、

方便、快捷、实惠的电动车是很多人的出行工具。可是,随着电动车的普及,它的安全性也越来越受到人们关注。为了出行更安全,交通部门限制电动车的行驶速度为24km/h。若某款电动车正常行驶遇到紧急情况时,紧急刹车时行驶的路程S(单位:m)和时间t(单位:s)的关系为:
(Ⅰ)求从开始紧急刹车至电动车完全停止所经过的时间;
(Ⅱ)求该款车正常行驶的速度是否在限行范围内?

  • 题型:14
  • 难度:中等
  • 人气:2151
18、

正项数列的前n项和为,且
(Ⅰ)求数列的通项公式
(Ⅱ)求证:

  • 题型:14
  • 难度:较难
  • 人气:995
19、

已知三棱柱中,平面⊥平面ABC,BC⊥AC,D为AC的中点,AC=BC=AA1=A1C=2。

(Ⅰ)求证:AC1⊥平面A1BC;
(Ⅱ)求平面AA1B与平面A1BC的夹角的余弦值。

  • 题型:14
  • 难度:较难
  • 人气:373
20、

已知椭圆的中心在原点,焦点在x轴上,离心率。它有一个顶点恰好是抛物线=4y的焦点。过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且
(Ⅰ)求动点C的轨迹E的方程;
(Ⅱ)设椭圆的左右顶点分别为A,B,直线AC(C点不同于A,B)与直线交于点R,D为线段RB的中点。试判断直线CD与曲线E的位置关系,并证明你的结论。

  • 题型:14
  • 难度:较难
  • 人气:174
21、


(Ⅰ)求的极值点;
(Ⅱ)当时,若方程上有两个实数解,求实数t的取值范围;
(Ⅲ)证明:当时,

  • 题型:14
  • 难度:较难
  • 人气:501