高考数学文二轮专题复习与测试解答题保分训练练习卷
已知函数f(x)=sin+cos,g(x)=2sin2.
(1)若α是第一象限角,且f(α)=,求g(α)的值;
(2)求使f(x)≥g(x)成立的x的取值集合.
- 题型:14
- 难度:中等
- 人气:163
为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如图.
(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);
(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为1,2,估计1-2的值.
- 题型:14
- 难度:中等
- 人气:1304
设正项数列{an}的前n项和是Sn,若{an}和{}都是等差数列,且公差相等.
(1)求{an}的通项公式;
(2)若a1,a2,a5恰为等比数列{bn}的前三项,记数列cn=,数列{cn}的前n项和为Tn,求Tn.
- 题型:14
- 难度:中等
- 人气:1563
袋内装有6个球,这些球依次被编号为1、2、3、……、6,设编号为n的球重n2-6n+12(单位:克),这些球等可能地从袋里取出(不受重量、编号的影响).
(1)从袋中任意取出一个球,求其重量大于其编号的概率;
(2)如果不放回地任意取出2个球,求它们重量相等的概率.
- 题型:14
- 难度:中等
- 人气:1113
在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC的中点,又∠CAD=30°,PA=AB=4,点N在线段PB上,且=.
(1)求证:BD⊥PC;
(2)求证:MN∥平面PDC;
(3)设平面PAB∩平面PCD=l,试问直线l是否与直线CD平行,请说明理由.
- 题型:14
- 难度:中等
- 人气:1809
已知数列{an}的相邻两项an,an+1是关于x的方程x2-2nx+bn=0的两根,且a1=1.
(1)求证:数列是等比数列;
(2)求数列{an}的前n项和Sn;
(3)设函数f(n)=bn-t·Sn(n∈N*),若f(n)>0对任意的n∈N*都成立,求t的取值范围.
- 题型:14
- 难度:较难
- 人气:1163
某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.
(1)求图中实数a的值;
(2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;
(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.
- 题型:14
- 难度:中等
- 人气:565
已知m=(2cos x+2sin x,1),n=(cos x,-y),且m⊥n.
(1)将y表示为x的函数f(x),并求f(x)的单调递增区间;
(2)已知a,b,c分别为△ABC的三个内角A,B,C对应的边长,若f=3,且a=2,b+c=4,求△ABC的面积.
- 题型:14
- 难度:较难
- 人气:565
如图,在几何体ABCDE中,AB=AD=2,AB⊥AD,AE⊥平面ABD,M为线段BD的中点,MC∥AE,且AE=MC=.
(1)求证:平面BCD⊥平面CDE;
(2)若N为线段DE的中点,求证:平面AMN∥平面BEC.
- 题型:14
- 难度:中等
- 人气:537
设角A,B,C为△ABC的三个内角.
(1)设f(A)=sin A+2sin ,当A取A0时,f(A)取极大值f(A0),试求A0和f(A0)的值;
(2)当A取A0时,·=-1,求BC边长的最小值.
- 题型:14
- 难度:中等
- 人气:2000
已知四棱锥P-ABCD的正视图是一个底边长为4,腰长为3的等腰三角形,如图分别是四棱锥P-ABCD的侧视图和俯视图.
(1)求证:AD⊥PC;
(2)求四棱锥P-ABCD的侧面PAB的面积.
- 题型:14
- 难度:中等
- 人气:1695