优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试卷 / 高中数学 / 试卷选题
  • 2021-12-03
  • 题量:21
  • 年级:高三
  • 类型:专题竞赛
  • 浏览:156

高考数学总复习考点引领+技巧点拨第二章第12课时练习卷

1、

函数f(x)=x3-15x2-33x+6的单调减区间为______________.

  • 题型:2
  • 难度:较易
  • 人气:1232
2、

若函数f(x)=ex-ax在x=1处取到极值,则a=________.

  • 题型:2
  • 难度:较易
  • 人气:1037
3、

函数y=x+sinx,x∈[0,2π]的值域为________.

  • 题型:2
  • 难度:中等
  • 人气:1608
4、

已知函数f(x)=-x2+blnx在区间[,+∞)上是减函数,则b的取值范围是________.

  • 题型:2
  • 难度:中等
  • 人气:2066
5、

用长为90cm、宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻折90°角,再焊接而成,则该容器的高为________cm时,容器的容积最大.

  • 题型:2
  • 难度:较易
  • 人气:1551
6、

已知函数f(x)=x3-ax-1.
(1)若a=3时,求f(x)的单调区间;
(2)若f(x)在实数集R上单调递增,求实数a的取值范围;
(3)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的取值范围;若不存在,说明理由.

  • 题型:14
  • 难度:较难
  • 人气:1470
7、

已知函数f(x)=x2-mlnx+(m-1)x,当m≤0时,试讨论函数f(x)的单调性;

  • 题型:14
  • 难度:中等
  • 人气:689
8、

若函数f(x)=-+blnx在(1,+∞)上是减函数,求实数b的取值范围.

  • 题型:14
  • 难度:较易
  • 人气:764
9、

设函数f(x)=(x2+ax+b)ex(x∈R).
(1)若a=2,b=-2,求函数f(x)的极大值;
(2)若x=1是函数f(x)的一个极值点.
①试用a表示b;
②设a>0,函数g(x)=(a2+14)ex+4.若ξ1、ξ2∈[0,4],使得|f(ξ1)-g(ξ2)|<1成立,求a的取值范围.

  • 题型:14
  • 难度:较难
  • 人气:1090
10、

已知函数f(x)=ax3+bx2-3x(a、b∈R)在点x=-1处取得极大值为2.
(1)求函数f(x)的解析式;
(2)若对于区间[-2,2]上任意两个自变量的值x1、x2,都有|f(x1)-f(x2)|≤c,求实数c的最小值.

  • 题型:14
  • 难度:中等
  • 人气:643
11、

请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A、B、C、D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.
 
(1)某广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?
(2)某厂商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.

  • 题型:14
  • 难度:较难
  • 人气:862
12、

某地方政府在某地建一座桥,两端的桥墩相距m米,此工程只需建两端桥墩之间的桥面和桥墩(包括两端的桥墩).经预测,一个桥墩的费用为256万元,相邻两个桥墩之间的距离均为x,且相邻两个桥墩之间的桥面工程费用为(1+)x万元,假设所有桥墩都视为点且不考虑其他因素,记工程总费用为y万元.
(1)试写出y关于x的函数关系式;
(2)当m=1280米时,需要新建多少个桥墩才能使y最小?

  • 题型:14
  • 难度:较难
  • 人气:1219
13、

已知函数f(x)=lnx-ax(a∈R).
(1)求函数f(x)的单调区间;
(2)当a>0时,求函数f(x)在[1,2]上的最小值.

  • 题型:14
  • 难度:较难
  • 人气:2054
14、

若存在正数x使2x(x-a)<1成立,则a的取值范围是________.

  • 题型:2
  • 难度:较易
  • 人气:732
15、

若函数f(x)=x2+ax+上是增函数,则a的取值范围是________.

  • 题型:2
  • 难度:较易
  • 人气:334
16、

已知函数f(x)=lnx- (m∈R)在区间[1,e]上取得最小值4,则m=________.

  • 题型:2
  • 难度:中等
  • 人气:557
17、

设函数f(x)=x2-(a-2)x-alnx.
(1)求函数f(x)的单调区间;
(2)若函数f(x)有两个零点,求满足条件的最小正整数a的值;
(3)若方程f(x)=c有两个不相等的实数根x1、x2,求证:f′>0.

  • 题型:14
  • 难度:困难
  • 人气:423
18、

如果关于x的方程ax+=3在区间(0,+∞)上有且仅有一个解,那么实数a的取值范围为________.

  • 题型:2
  • 难度:较易
  • 人气:1255
19、

已知函数f(x)=lnx-,若函数f(x)在(0,+∞)上为增函数,则a的取值范围是________.

  • 题型:2
  • 难度:较易
  • 人气:1042
20、

设直线y=a分别与曲线y2=x和y=ex交于点M、N,则当线段MN取得最小值时a的值为________.

  • 题型:2
  • 难度:中等
  • 人气:1215
21、

已知函数f(x)=(ax2+x)ex,其中e是自然数的底数,a∈R.
(1)当a<0时,解不等式f(x)>0;
(2)若f(x)在[-1,1]上是单调函数,求a的取值范围;
(3)当a=0时,求整数k的所有值,使方程f(x)=x+2在[k,k+1]上有解.

  • 题型:14
  • 难度:较难
  • 人气:463