福建省福州市高三5月综合练习文科数学试卷
设集合A={x|x2-(a+3)x+3a=0},B={x|x2-5x+4=0},集合A∪B中所有元素之和为8,则实数a的取值集合为( )
A.{0} | B.{0,3} | C.{1,3,4} | D.{0,1,3,4} |
- 题型:1
- 难度:中等
- 人气:1763
抛物线y=2x2的准线方程为( )
A. | B. | C. | D. |
- 题型:1
- 难度:中等
- 人气:829
已知a∈R,且a≠0,则是“a>1”的( ).
A.充分非必要条件 | B.必要非充分条件 |
C.充要条件 | D.既非充分又非必要条件 |
- 题型:1
- 难度:较易
- 人气:580
函数y=ln(x+1)与的图像交点的横坐标所在区间为( )
A.(0,1) | B.(1,2) | C.(2,3) | D.(3,4) |
- 题型:1
- 难度:较易
- 人气:203
执行如图所示的程序框图,如果输出的结果为,则判断框内应填入的条件是( )
A.k<3 | B.k>3 | C.k<4 | D.k>4 |
- 题型:1
- 难度:较易
- 人气:1310
某公司的一品牌电子产品,2013年年初,由于市场疲软,产品销售量逐渐下降,五月份公司加大了宣传力度,销售量出现明显的回升,九月份,公司借大学生开学之际,采取了促销等手段,产品的销售量猛增,十一月份之后,销售量有所回落.下面大致能反映出公司2013年该产品销售量的变化情况的图象是( )
- 题型:1
- 难度:较易
- 人气:1711
函数(0≤x≤9)的最大值与最小值的和为( ).
A. | B.0 | C.-1 | D. |
- 题型:1
- 难度:中等
- 人气:1642
如图,半径为R的圆C中,已知弦AB的长为5,则=( )
A. | B. | C. | D. |
- 题型:1
- 难度:较易
- 人气:316
已知直线a,b异面, ,给出以下命题:①一定存在平行于a的平面
使;②一定存在平行于a的平面使∥;③一定存在平行于a的平面使;④一定存在无数个平行于a的平面与b交于一定点.则其中论断正确的是( )
A.①④ | B.②③ | C.①②③ | D.②③④ |
- 题型:1
- 难度:较易
- 人气:2086
已知P(x,y)为椭圆上一点,F为椭圆C的右焦点,若点M满足且,则的最小值为( )
A. | B.3 | C. | D.1 |
- 题型:1
- 难度:较难
- 人气:1584
在△ABC中,若a、b、c分别为角A、B、C所对的边,且cos2B+cosB+cos(A-C)=1,则有( ).
A.a、c、b 成等比数列 B.a、c、b 成等差数列
C.a、b、c 成等差数列 D.a、b、c成等比数列
- 题型:1
- 难度:中等
- 人气:1850
已知都是定义在R上的函数,,,且(), ,对于数列(n="1,2," ,10),任取正整数k(1≤k≤10),则其前k项和大于的概率是( ).
A. | B. | C. | D. |
- 题型:1
- 难度:中等
- 人气:1602
一个容量为20的样本数据分组后,分组与频数分别如下,2;,3;,4;
,5;,4;,2.则样本在上的频率是 .
- 题型:2
- 难度:中等
- 人气:1903
已知函数(其中,,)的部分图象如图所示,则函数f(x)的解析式是 .
- 题型:2
- 难度:较易
- 人气:891
某几何体的三视图如图所示,则该几何体的体积的最大值为 .
- 题型:2
- 难度:中等
- 人气:240
已知且,现给出如下结论:
①;②;③;④;;
⑤的极值为1和3.其中正确命题的序号为 .
- 题型:2
- 难度:较难
- 人气:1228
已知是一个公差大于0的等差数列,且满足.
(1)求数列的通项公式;
(2)若数列和数列满足等式:(n为正整数)求数列的前n项和.
- 题型:14
- 难度:中等
- 人气:1973
如图,经过村庄A有两条夹角为60°的公路AB,AC,根据规划拟在两条公路之间的区域内建一工厂P,分别在两条公路边上建两个仓库M、N (异于村庄A),要求PM=PN=MN=2(单位:千米).如何设计, 可以使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远).
- 题型:14
- 难度:中等
- 人气:838
把一颗骰子投掷两次,观察掷出的点数,并记第一次掷出的点数为,第二次掷出的点数为.试就方程组(※)解答下列问题:
(1)求方程组没有解的概率;
(2)求以方程组(※)的解为坐标的点落在第四象限的概率..
- 题型:14
- 难度:中等
- 人气:1089
已知正△ABC的边长为, CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B,如图所示.
(1)试判断折叠后直线AB与平面DEF的位置关系,并说明理由;
(2)若棱锥E-DFC的体积为,求的值;
(3)在线段AC上是否存在一点P,使BP⊥DF?如果存在,求出的值;如果不存在,请说明理由.
- 题型:14
- 难度:中等
- 人气:1793
已知焦点在y轴,顶点在原点的抛物线C1经过点P(2,2),以C1上一点C2为圆心的圆过定点A(0,1),记为圆与轴的两个交点.
(1)求抛物线的方程;
(2)当圆心在抛物线上运动时,试判断是否为一定值?请证明你的结论;
(3)当圆心在抛物线上运动时,记,,求的最大值.
- 题型:14
- 难度:中等
- 人气:507
已知函数 ().
(1)若,求函数的极值;
(2)设.
① 当时,对任意,都有成立,求的最大值;
② 设的导函数.若存在,使成立,求的取值范围.
- 题型:14
- 难度:较难
- 人气:196