优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试卷 / 高中数学 / 试卷选题
  • 2021-11-10
  • 题量:20
  • 年级:高一
  • 类型:期末考试
  • 浏览:566

江苏如东高中高一上学期期末模拟数学试卷

1、

若幂函数的解析式为,则

  • 题型:2
  • 难度:较易
  • 人气:1433
2、

的值为 ________.

  • 题型:2
  • 难度:较易
  • 人气:172
3、

,则集合的子集有______个.

  • 题型:2
  • 难度:较易
  • 人气:800
4、

已知函数的图象是连续不断的,观察下表:

x
-2
-1
0
1
2

-6
3
-3
-2
1

 
函数在区间[-2,2]上的零点至少有_____个.

  • 题型:2
  • 难度:较易
  • 人气:314
5、

垂直,且,则的坐标为_______.

  • 题型:2
  • 难度:中等
  • 人气:1441
6、

三个数的大小关系为____________       .(按从小到大的顺序填写)

  • 题型:2
  • 难度:较易
  • 人气:1199
7、

已知函数的图象不经过第三象限,则实数的取值范围是____________.

  • 题型:2
  • 难度:中等
  • 人气:1966
8、

已知,则

  • 题型:2
  • 难度:较易
  • 人气:1229
9、

,则

  • 题型:2
  • 难度:中等
  • 人气:2124
10、

若函数f(x)同时具有以下两个性质:①f(x)是偶函数;②对任意实数x,都有f()= f(),则下列函数中,符合上述条件的有_________.(填序号)
①f(x)=cos4x   ②f(x)=sin(2x)   ③f(x)=sin(4x)  ④f(x) = cos(4x)

  • 题型:2
  • 难度:中等
  • 人气:1902
11、

已知偶函数满足:,且当时,,其图象与直线轴右侧的交点按横坐标从小到大依次记为,则等于     .

  • 题型:2
  • 难度:中等
  • 人气:902
12、

已知函数若对任意的都有,则=__________.

  • 题型:2
  • 难度:较易
  • 人气:852
13、

定义运算的奇偶性为  .

  • 题型:2
  • 难度:较易
  • 人气:553
14、

已知函数,当时,有.给出以下结论:
(1);(2);(3);(4)
其中正确的结论序号为_________

  • 题型:2
  • 难度:中等
  • 人气:1465
15、

如图,在平面直角坐标系中,以轴为始边作两个锐角,它们的终边分别交单位圆于两点.已知两点的横坐标分别是

(1)求的值;
(2)求的值.

  • 题型:14
  • 难度:中等
  • 人气:1448
16、

已知,设.
(1)求函数的最小正周期,并写出的减区间;
(2)当时,求函数的最大值及最小值.

  • 题型:14
  • 难度:中等
  • 人气:566
17、

已知函数的定义域是,且满足,,
如果对于,都有.
(1)求
(2)解不等式.

  • 题型:14
  • 难度:较易
  • 人气:237
18、

商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少.把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元.现在这种羊毛衫的成本价是100元/ 件,商场以高于成本价的价格(标价)出售. 问:
(1)商场要获取最大利润,羊毛衫的标价应定为每件多少元?
(2)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?

  • 题型:14
  • 难度:中等
  • 人气:829
19、

已知坐标平面内O为坐标原点,P是线段OM上一个动点.当取最小值时,求的坐标,并求的值.

  • 题型:14
  • 难度:较难
  • 人气:2085
20、

为奇函数,为常数.
(1)求的值;
(2)证明在区间(1,+∞)内单调递增;
(3)若对于区间[3,4]上的每一个的值,不等式>恒成立,求实数的取值范围.

  • 题型:14
  • 难度:中等
  • 人气:407