[福建]2014年初中毕业升学考试(福建莆田卷)数学
3的相反数是( )
A.﹣3 | B.3 | C. | D.﹣ |
- 题型:1
- 难度:容易
- 人气:2021
下列运算正确的是( )
A.a3•a2=a6 | B.(2a)3=6a3 |
C.(a﹣b)2=a2﹣b2 | D.3a2﹣a2=2a2 |
- 题型:1
- 难度:容易
- 人气:310
如图图形中,是轴对称图形,但不是中心对称图形的是( )
- 题型:1
- 难度:容易
- 人气:579
如图是由6个大小相同的小正方体组成的几何体,它的左视图是( )
- 题型:1
- 难度:容易
- 人气:655
若x、y满足方程组,则x﹣y的值等于( )
A.﹣1 | B.1 | C.2 | D.3 |
- 题型:1
- 难度:容易
- 人气:1916
在半径为2的圆中,弦AB的长为2,则的长等于( )
A. | B. | C. | D. |
- 题型:1
- 难度:较易
- 人气:1243
如图,点B在x轴上,∠ABO=90°,∠A=30°,OA=4,将△OAB饶点O按顺时针方向旋转120°得到△OA′B′,则点A′的坐标是( )
A.(2,﹣2) | B.(2,﹣2) | C.(2,﹣2) | D.(2,﹣2) |
- 题型:1
- 难度:较难
- 人气:1073
如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是( )
- 题型:1
- 难度:较难
- 人气:1912
我国的北斗卫星导航系统与美国的GPS和俄罗斯格洛纳斯系统并称世界三大卫星导航系统,北斗系统的卫星轨道高达36000公里,将36000用科学记数法表示为
- 题型:2
- 难度:容易
- 人气:940
若正n边形的一个外角为45°,则n=
- 题型:2
- 难度:容易
- 人气:1542
若关于x的一元二次方程x2+3x+a=0有一个根是﹣1,则a=
- 题型:2
- 难度:容易
- 人气:1237
在一个不透明的袋子中,装有大小、形状、质地等都相同的红色、黄色、白色小球各1个,从袋子中随机摸出一个小球,之后把小球放回袋子中并摇匀,再随机摸出一个小球,则两次摸出的小球颜色相同的概率是
- 题型:2
- 难度:容易
- 人气:595
在一次数学测试中,小明所在小组6人的成绩(单位:分)分别为84、79、83、87、77、81,则这6人本次数学测试成绩的中位数是
- 题型:2
- 难度:容易
- 人气:558
计算:
- 题型:2
- 难度:容易
- 人气:169
如图,菱形ABCD的边长为4,∠BAD=120°,点E是AB的中点,点F是AC上的一动点,则EF+BF的最小值是 .
- 题型:2
- 难度:中等
- 人气:793
如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=x上,则A2014的坐标是 .
- 题型:2
- 难度:较难
- 人气:199
计算:﹣2sin60°+|﹣|.
- 题型:13
- 难度:容易
- 人气:836
解不等式≥,并把它的解集在数轴上表示出来.
- 题型:14
- 难度:容易
- 人气:1084
某校为了解该校九年级学生对蓝球、乒乓球、羽毛球、足球四种球类运动项目的喜爱情况,对九年级部分学生进行了随机抽样调查,每名学生必须且只能选择最喜爱的一项运动项目上,将调查结果统计后绘制成如图两幅不完整的统计图,请根据图中的信息,回答下列问题:
(1)这次被抽查的学生有 60 人;请补全条形统计图;
(2)在统计图2中,“乒乓球”对应扇形的圆心角是 144 度;
(3)若该校九年级共有480名学生,估计该校九年级最喜欢足球的学生约有 48 人.
- 题型:14
- 难度:容易
- 人气:1593
如图,点D是线段BC的中点,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点A,连接AB,AC,AD,点E为AD上一点,连接BE,CE.
(1)求证:BE=CE;
(2)以点E为圆心,ED长为半径画弧,分别交BE,CE于点F,G.若BC=4,∠EBD=30°,求图中阴影部分(扇形)的面积.
- 题型:14
- 难度:较易
- 人气:984
如图,在平面直角坐标系中,直线l与x轴相交于点M,与y轴相交于点N,Rt△MON的外心为点A(,﹣2),反比例函数y=(x>0)的图象过点A.
(1)求直线l的解析式;
(2)在函数y=(x>0)的图象上取异于点A的一点B,作BC⊥x轴于点C,连接OB交直线l于点P.若△ONP的面积是△OBC面积的3倍,求点P的坐标.
- 题型:14
- 难度:中等
- 人气:1278
如图,AB是⊙O的直径,C是⊙O上的一点,过点A作AD⊥CD于点D,交⊙O于点E,且=.
(1)求证:CD是⊙O的切线;
(2)若tan∠CAB=,BC=3,求DE的长.
- 题型:14
- 难度:较难
- 人气:1832
某水果店销售某中水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图1(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数关系式y2=mx2﹣8mx+n,其变化趋势如图2.
(1)求y2的解析式;
(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?
- 题型:14
- 难度:中等
- 人气:2142
如图,在边长为4的正方形ABCD中,动点E以每秒1个单位长度的速度从点A开始沿边AB向点B运动,动点F以每秒2个单位长度的速度从点B开始沿折线BC﹣CD向点D运动,动点E比动点F先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动,设点F的运动时间为t秒.
(1)点F在边BC上.
①如图1,连接DE,AF,若DE⊥AF,求t的值;
②如图2,连结EF,DF,当t为何值时,△EBF与△DCF相似?
(2)如图3,若点G是边AD的中点,BG,EF相交于点O,试探究:是否存在在某一时刻t,使得?若存在,求出t的值;若不存在,请说明理由.
- 题型:14
- 难度:较难
- 人气:610
如图,抛物线C1:y=(x+m)2(m为常数,m>0),平移抛物线y=﹣x2,使其顶点D在抛物线C1位于y轴右侧的图象上,得到抛物线C2.抛物线C2交x轴于A,B两点(点A在点B的左侧),交y轴于点C,设点D的横坐标为a.
(1)如图1,若m=.
①当OC=2时,求抛物线C2的解析式;
②是否存在a,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;
(2)如图2,当OB=2﹣m(0<m<)时,请直接写出到△ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示).
- 题型:14
- 难度:较难
- 人气:997