[辽宁]2014年初中毕业升学考试(辽宁抚顺卷)数学
的倒数是( )
A.-2 | B.2 | C. | D. |
- 题型:1
- 难度:容易
- 人气:1660
若一粒米的质量约是0.000012kg,将数据0.000012用科学记数法表示为( )
A.12×10-4 | B.1.2×10-6 | C.1.2×10-5 | D.1.2×10-4 |
- 题型:1
- 难度:较易
- 人气:1577
如图所示,已知AB∥CD,CE平分∠ACD,当∠A=120°时,∠ECD的度数是( )
A.45° | B.40° | C.35° | D.30° |
- 题型:1
- 难度:较易
- 人气:1740
如图放置的几何体的左视图是( )
- 题型:1
- 难度:容易
- 人气:1524
下列事件是必然事件的是( )
A.如果|a|=|b|,那么a=b |
B.平分弦的直径垂直于弦,并且平分弦所对的两条弧 |
C.半径分别为3和5的两圆相外切,则两圆的圆心距为8 |
D.三角形的内角和是360° |
- 题型:1
- 难度:较易
- 人气:1797
函数y=x-1的图象是( )
- 题型:1
- 难度:较易
- 人气:618
下列运算正确的是( )
A.-2(a-1)=-2a-1 | B.(-2a)2=-2a2 | C.(2a+b)2=4a2+b2 | D.3x2-2x2=x2 |
- 题型:1
- 难度:较易
- 人气:318
甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为( )
A. | B. |
C. | D. |
- 题型:1
- 难度:中等
- 人气:1046
如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会( )
A.逐渐增大 | B.不变 | C.逐渐减小 | D.先增大后减小 |
- 题型:1
- 难度:中等
- 人气:1576
如图,将足够大的等腰直角三角板PCD的锐角顶点P放在另一个等腰直角三角板PAB的直角顶点处,三角板PCD绕点P在平面内转动,且∠CPD的两边始终与斜边AB相交,PC交AB于点M,PD交AB于点N,设AB=2,AN=x,BM=y,则能反映y与x的函数关系的图象大致是( )
- 题型:1
- 难度:较难
- 人气:919
函数y=中,自变量x的取值范围是
- 题型:2
- 难度:较易
- 人气:1837
一组数据3,5,7,8,4,7的中位数是
- 题型:2
- 难度:较易
- 人气:1249
把标号分别为a,b,c的三个小球(除标号外,其余均相同)放在一个不透明的口袋中,充分混合后,随机地摸出一个小球,记下标号后放回,充分混合后,再随机地摸出一个小球,两次摸出的小球的标号相同的概率是 .
- 题型:2
- 难度:中等
- 人气:1909
将抛物线y=(x-3)2+1先向上平移2个单位,再向左平移1个单位后,得到的抛物线解析式为
- 题型:2
- 难度:中等
- 人气:1679
如图,⊙O与正方形ABCD的各边分别相切于点E、F、G、H,点P是上的一点,则tan∠EPF的值是
- 题型:2
- 难度:中等
- 人气:921
如图,河流两岸a、b互相平行,点A、B是河岸a上的两座建筑物,点C、D是河岸b上的两点,A、B的距离约为200米.某人在河岸b上的点P处测得∠APC=75°,∠BPD=30°,则河流的宽度约为 米.
- 题型:2
- 难度:较易
- 人气:1593
将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2= 度.
- 题型:2
- 难度:较易
- 人气:270
如图,已知CO1是△ABC的中线,过点O1作O1E1∥AC交BC于点E1,连接AE1交CO1于点O2;过点O2作O2E2∥AC交BC于点E2,连接AE2交CO1于点O3;过点O3作O3E3∥AC交BC于点E3,…,如此继续,可以依次得到点O4,O5,…,On和点E4,E5,…,En.则OnEn= AC.(用含n的代数式表示)
- 题型:2
- 难度:较难
- 人气:1587
先化简,再求值:(1-)÷,其中x=(+1)0+()-1•tan60°.
- 题型:14
- 难度:中等
- 人气:1966
居民区内的“广场舞”引起媒体关注,辽宁都市频道为此进行过专访报道.小平想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:
A.非常赞同; | B.赞同但要有时间限制; | C.无所谓; | D.不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图. |
请你根据图中提供的信息解答下列问题:
(1)求本次被抽查的居民有多少人?
(2)将图1和图2补充完整;
(3)求图2中“C”层次所在扇形的圆心角的度数;
(4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人.
- 题型:14
- 难度:中等
- 人气:1944
如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC和△DEF的顶点都在格点上,结合所给的平面直角坐标系解答下列问题:
(1)画出△ABC向上平移4个单位长度后所得到的△A1B1C1;
(2)画出△DEF绕点O按顺时针方向旋转90°后所得到的△D1E1F1;
(3)△A1B1C1和△D1E1F1组成的图形是轴对称图形吗?如果是,请直接写出对称轴所在直线的解析式.
- 题型:14
- 难度:中等
- 人气:1405
近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A、B两种设备,已知:购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元.
(1)求每台A种、B种设备各多少万元?
(2)根据学校实际,需购进A种和B种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A种设备多少台?
- 题型:14
- 难度:中等
- 人气:1671
如图,在矩形ABCD中,E是CD边上的点,且BE=BA,以点A为圆心、AD长为半径作⊙A交AB于点M,过点B作⊙A的切线BF,切点为F.
(1)请判断直线BE与⊙A的位置关系,并说明理由;
(2)如果AB=10,BC=5,求图中阴影部分的面积.
- 题型:14
- 难度:较难
- 人气:1826
某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?
(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?
- 题型:14
- 难度:较难
- 人气:2159
已知:Rt△A′BC′≌Rt△ABC,∠A′C′B=∠ACB=90°,∠A′BC′=∠ABC=60°,Rt△A′BC′可绕点B旋转,设旋转过程中直线CC′和AA′相交于点D.
(1)如图1所示,当点C′在AB边上时,判断线段AD和线段A′D之间的数量关系,并证明你的结论;
(2)将Rt△A′BC′由图1的位置旋转到图2的位置时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;
(3)将Rt△A′BC′由图1的位置按顺时针方向旋转α角(0°≤α≤120°),当A、C′、A′三点在一条直线上时,请直接写出旋转角的度数.
- 题型:14
- 难度:困难
- 人气:1179
如图,抛物线y=ax2+x+c与x轴交于点A(4,0)、B(-1,0),与y轴交于点C,连接AC,点M是线段OA上的一个动点(不与点O、A重合),过点M作MN∥AC,交OC于点N,将△OMN沿直线MN折叠,点O的对应点O′落在第一象限内,设OM=t,△O′MN与梯形AMNC重合部分面积为S.
(1)求抛物线的解析式;
(2)①当点O′落在AC上时,请直接写出此时t的值;
②求S与t的函数关系式;
(3)在点M运动的过程中,请直接写出以O、B、C、O′为顶点的四边形分别是等腰梯形和平行四边形时所对应的t值.
- 题型:14
- 难度:困难
- 人气:1442