优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试卷 / 高中数学 / 试卷选题
  • 2021-10-20
  • 题量:5
  • 年级:高一
  • 类型:练习检测
  • 浏览:184

新人教A版选修4-1 3.3平面与圆锥面的截线练习卷

1、

已知圆C的参数方程为(θ为参数),若P是圆C与y轴正半轴的交点,以原点为极点,x轴的正半轴为极轴建立极坐标系,求过点P的圆C的切线的极坐标方程.

  • 题型:2
  • 难度:中等
  • 人气:170
2、

已知圆柱半径是2,则是一个与圆柱的轴成45°角的平面截圆柱面所得截痕曲线的离心率是    

  • 题型:2
  • 难度:中等
  • 人气:279
3、

在空间中,取直线l为轴,直线l′与l相交于点O,其夹角为α(α为锐角),l′围绕l旋转得到以O为顶点,l′为母线的圆锥面,任取平面π,若它与轴l交角为β(π与l平行时,记β=0),则:当 时,平面π与圆锥面的交线为     

  • 题型:2
  • 难度:中等
  • 人气:548
4、

已知椭圆C:,(a>b>0)的两焦点分别为F1、F2,离心率.过直线l:上任意一点M,引椭圆C的两条切线,切点为A、B.
(1)在圆中有如下结论:“过圆x2+y2=r2上一点P(x0,y0)处的切线方程为:x0x+y0y=r2”.由上述结论类比得到:“过椭圆(a>b>0),上一点P(x0,y0)处的切线方程”(只写类比结论,不必证明).
(2)利用(1)中的结论证明直线AB恒过定点();
(3)当点M的纵坐标为1时,求△ABM的面积.

  • 题型:14
  • 难度:中等
  • 人气:703
5、

如图四棱锥S﹣ABCD中,SD⊥AD,SD⊥CD,E是SC的中点,O是底面正方形ABCD的中心,AB=SD=6.

(1)求证:EO∥平面SAD;
(2)求直线EO与平面SCD所成的角.

  • 题型:14
  • 难度:中等
  • 人气:681