随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与池中心的水平距离为1米处达到最高,水柱落地处离池中心3米.
(1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式;
(2)求出水柱的最大高度是多少?
某食品连锁店研制出一种新式月饼,每块成本为6元.试销一段时间后发现,若每块月饼的售价不超过10元,每天可销售300块;若每块月饼的售价超过10元,每提高1元,每天的销量就会减少30块.这家食品连锁店每天需要支付因生产这种月饼而产生的其他费用(不含月饼成本)200元.设每块月饼的售价为 (元 ,食品连锁店每天销售这种月饼的纯收入为 (元 .(注:纯收入 销售额 成本 其他费用)
(1)当每块月饼售价不超过10元时,请直接写出 与 之间的函数关系式: .当每块月饼售价超过10元时,请直接写出 与 之间的函数关系式: ;
(2)如果这种月饼每块的售价不超过12元,那么如何定价才能使该食品连锁店每天销售这种月饼的纯收入提高?最高纯收入为多少元?
某商场经营一种海产品,进价是每千克20元,根据市场调查发现,每日的销售量 (千克)与售价 (元 千克)是一次函数关系,如图所示:
(1)求 与 的函数关系式(不求自变量取值范围);
(2)某日该商场出售这种海产品获得了21000元的利润,该海产品的售价是多少?
(3)若某日该商场这种海产品的销售量不少于650千克,该商场销售这种海产品获得的最大利润是多少?
某商店以每件50元的价格购进一批新型产品,如果按每件60元出售,那么每周可销售500件.根据市场规律,这种产品的销售单价每提高1元,其销售量每周相应减少10件,但每件产品的销售单价不低于60元,且不能高于85元,设每周的销售量为 (件 ,这种产品的销售单价为 (元 ,解答下列问题:
(1)请直接写出 与 之间的函数关系式;
(2)商家要想每周获得8000元的销售利润,销售单价应定为多少元?
(3)销售单价为多少元时,每周获得的销售利润最大?最大利润是多少元?
某商店购进一批进价为20元 件的日用商品,第一个月,按进价提高 的价格出售,售出400件,第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少.销售量 (件 与销售单价 (元 的关系如图所示.
(1)图中点 所表示的实际意义是 ;销售单价每提高1元时,销售量相应减少 件;
(2)请直接写出 与 之间的函数表达式 ;自变量 的取值范围为 ;
(3)第二个月的销售单价定为多少元时,可获得最大利润?最大利润是多少?
某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量 (本 与每本纪念册的售价 (元 之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.
(1)请直接写出 与 的函数关系式;
(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?
(3)设该文具店每周销售这种纪念册所获得的利润为 元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?
有一家苗圃计划植桃树和柏树,根据市场调查与预测,种植桃树的利润 (万元)与投资成本 (万元)满足如图①所示的二次函数 ;种植柏树的利润 (万元)与投资成本 (万元)满足如图②所示的正比例函数 .
(1)分别求出利润 (万元)和利润 (万元)关于投资成本 (万元)的函数关系式;
(2)如果这家苗圃以10万元资金投入种植桃树和柏树,桃树的投资成本不低于2万元且不高于8万元,苗圃至少获得多少利润?最多能获得多少利润?
某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果 (千克),增种果树 (棵 ,它们之间的函数关系如图所示.
(1)求 与 之间的函数关系式;
(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?
(3)当增种果树多少棵时,果园的总产量 (千克)最大?最大产量是多少?
如图1, 中, ,线段 在射线 上,且 ,线段 沿射线 运动,开始时,点 与点 重合,点 到达点 时运动停止,过点 作 ,与射线 相交于点 ,过点 作 的垂线,与射线 相交于点 .设 ,四边形 与 重叠部分的面积为 , 关于 的函数图象如图2所示(其中 , , 时,函数的解析式不同)
(1)填空: 的长是 ;
(2)求 关于 的函数关系式,并写出 的取值范围.
为备战2016年里约奥运会,中国女排的姑娘们刻苦训练,为国争光,如图,已知排球场的长度 为18米,位于球场中线处球网的高度 为2.43米,一队员站在点 处发球,排球从点 的正上方1.8米的 点向正前方飞出,当排球运行至离点 的水平距离 为7米时,到达最高点 建立如图所示的平面直角坐标系.
(1)当球上升的最大高度为3.2米时,求排球飞行的高度 (单位:米)与水平距离 (单位:米)的函数关系式.(不要求写自变量 的取值范围).
(2)在(1)的条件下,对方距球网0.5米的点 处有一队员,他起跳后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明.
(3)若队员发球既要过球网,又不出边界,问排球飞行的最大高度 的取值范围是多少?(排球压线属于没出界)
某公司研发了一款成本为60元的保温饭盒,投放市场进行试销售,按物价部门规定,其销售单价不低于成本,但销售利润不高于 ,市场调研发现,保温饭盒每天的销售数量 (个 与销售单价 (元 满足一次函数关系;当销售单价为70元时,销售数量为160个;当销售单价为80元时,销售数量为140个(利润率
(1)求 与 之间的函数关系式;
(2)当销售单价定为多少元时,公司每天获得利润最大,最大利润为多少元?
夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务.为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.
(1)设第 天生产空调 台,直接写出 与 之间的函数解析式,并写出自变量 的取值范围.
(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第 天的利润为 元,试求 与 之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.
如图,直线 的解析式为 ,它与 轴和 轴分别相交于 , 两点.平行于直线 的直线 从原点 出发,沿 轴的正方向以每秒1个单位长度的速度运动.它与 轴和 轴分别相交于 , 两点,运动时间为 秒 ,以 为斜边作等腰直角三角形 , 两点分别在 两侧).若 和 的重合部分的面积为 ,则 与 之间的函数关系的图象大致是
A.B.
C.D.
铁岭“荷花节”举办了为期15天的“荷花美食”厨艺秀.小张购进一批食材制作特色美食,每盒售价为50元,由于食材需要冷藏保存,导致成本逐日增加,第 天 且 为整数)时每盒成本为 元,已知 与 之间满足一次函数关系;第3天时,每盒成本为21元;第7天时,每盒成本为25元,每天的销售量为 盒, 与 之间的关系如下表所示:
第 天 |
|
|
每天的销售量 盒 |
10 |
|
(1)求 与 的函数关系式;
(2)若每天的销售利润为 元,求 与 的函数关系式,并求出第几天时当天的销售利润最大,最大销售利润是多少元?
(3)在“荷花美食”厨艺秀期间,共有多少天小张每天的销售利润不低于325元?请直接写出结果.
试题篮
()