某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,日销售量 与时间第 天之间的函数关系式为 , 为整数),销售单价 (元 与时间第 天之间满足一次函数关系如下表:
时间第 天 |
1 |
2 |
3 |
|
80 |
销售单价 (元 |
49.5 |
49 |
48.5 |
|
10 |
(1)直接写出销售单价 (元 与时间第 天之间的函数关系式.
(2)在整个销售旺季的80天里,哪一天的日销售利润最大?最大利润是多少?
小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为 (元 ,日销量为 (件 ,日销售利润为 (元 .
(1)求 与 的函数关系式.
(2)要使日销售利润为720元,销售单价应定为多少元?
(3)求日销售利润 (元 与销售单价 (元 的函数关系式,当 为何值时,日销售利润最大,并求出最大利润.
如图,在 中, , , ,点 , 分别是边 , 上的动点(点 不与 , 重合),且 ,过点 作 的平行线 ,交 于点 ,连接 ,设 为 .
(1)试说明不论 为何值时,总有 ;
(2)是否存在一点 ,使得四边形 为平行四边形,试说明理由;
(3)当 为何值时,四边形 的面积最大,并求出最大值.
在边长为2的等边三角形 中, 是 边上任意一点,过点 分别作 , , 、 分别为垂足.
(1)求证:不论点 在 边的何处时都有 的长恰好等于三角形 一边上的高;
(2)当 的长为何值时,四边形 的面积最大,并求出最大值.
在矩形 中, , ,动点 从点 出发,以每秒1个单位的速度,沿 向点 移动;同时点 从点 出发,仍以每秒1个单位的速度,沿 向点 移动,连接 , , .若两个点同时运动的时间为 秒 ,解答下列问题:
(1)设 的面积为 ,用含 的函数关系式表示 ;当 为何值时, 有最大值?并求出最小值;
(2)是否存在 的值,使得 ?试说明理由.
空地上有一段长为 米的旧墙 ,某人利用旧墙和木栏围成一个矩形菜园 ,已知木栏总长为100米.
(1)已知 ,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙 的长;
(2)已知 ,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园 的面积最大,并求面积的最大值.
如图,在足够大的空地上有一段长为 米的旧墙 ,某人利用旧墙和木栏围成一个矩形菜园 ,其中 ,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.
(1)若 ,所围成的矩形菜园的面积为450平方米,求所利用旧墙 的长;
(2)求矩形菜园 面积的最大值.
农经公司以30元 千克的价格收购一批农产品进行销售,为了得到日销售量 (千克)与销售价格 (元 千克)之间的关系,经过市场调查获得部分数据如下表:
销售价格 (元 千克) |
30 |
35 |
40 |
45 |
50 |
日销售量 (千克) |
600 |
450 |
300 |
150 |
0 |
(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定 与 之间的函数表达式;
(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?
(3)若农经公司每销售1千克这种农产品需支出 元 的相关费用,当 时,农经公司的日获利的最大值为2430元,求 的值.(日获利 日销售利润 日支出费用)
如图①,菱形 中, ,动点 从点 出发,沿折线 运动到点 停止,动点 从点 出发,沿线段 运动到点 停止,它们运动的速度相同,设点 出发 时, 的面积为 .已知 与 之间的函数关系如图②所示,其中 、 为线段,曲线 为抛物线的一部分.请根据图中的信息,解答下列问题:
(1)当 时, 的面积 (填“变”或“不变” ;
(2)分别求出线段 ,曲线 所对应的函数表达式;
(3)当 为何值时, 的面积是 ?
某品牌牛奶专营店销售一款牛奶,售价是在进价的基础上加价 出售,每月的销售额可以达到9.6万元,但每月需支出2.45万元的固定费用及进价的 的其他费用.
(1)如果该款牛奶每月所获的利润要达到1万元,那么 的值是多少?(利润 售价 进价 固定费用 其他费用)
(2)现这款牛奶的售价为64元 盒,根据市场调查,这款牛奶如果售价每降低 ,销售量将上升 ,求这款牛奶调价销售后,每月可获的最大利润.
某品牌牛奶专营店销售一款牛奶,售价是在进价的基础上加价 出售,每月的销售额可以达到9.6万元,但每月需支出2.45万元的固定费用及进价的 的其他费用.
(1)如果该款牛奶每月所获的利润要达到1万元,那么 的值是多少?(利润 售价 进价 固定费用 其他费用)
(2)现这款牛奶的售价为64元 盒,根据市场调查,这款牛奶如果售价每降低 ,销售量将上升 ,求这款牛奶调价销售后,每月可获的最大利润.
怡然美食店的 、 两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.
(1)该店每天卖出这两种菜品共多少份?
(2)该店为了增加利润,准备降低 种菜品的售价,同时提高 种菜品的售价,售卖时发现, 种菜品售价每降0.5元可多卖1份; 种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?
试题篮
()