如图,△ ABC中, AC= BC=3, AB=2,将它沿 AB翻折得到△ ABD,点 P、 E、 F分别为线段 AB、 AD、 DB上的动点,则 PE+ PF的最小值是( )
A. |
|
B. |
|
C. |
|
D. |
|
如图,在矩形 ABCD中, AD=8,对角线 AC与 BD相交于点 O, AE⊥ BD,垂足为点 E,且 AE平分∠ BAC,则 AB的长为 .
(1)【操作发现】
如图1,将△ ABC绕点 A顺时针旋转60°,得到△ ADE,连接 BD,则∠ ABD= 度.
(2)【类比探究】
如图2,在等边三角形 ABC内任取一点 P,连接 PA, PB, PC,求证:以 PA, PB, PC的长为三边必能组成三角形.
(3)【解决问题】
如图3,在边长为 的等边三角形 ABC内有一点 P,∠ APC=90°,∠ BPC=120°,求△ APC的面积.
(4)【拓展应用】
如图4是 A, B, C三个村子位置的平面图,经测量 AC=4, BC=5,∠ ACB=30°, P为△ ABC内的一个动点,连接 PA, PB, PC.求 PA+ PB+ PC的最小值.
如图,在△ ABC中,∠ BAC=45°, AD⊥ BC于点 D, BD=6, DC=4,求 AD的长.小明同学利用翻折,巧妙地解答了此题,按小明的思路探究并解答下列问题:
(1)分别以 AB, AC所在直线为对称轴,画出△ ABD和△ ACD的对称图形,点 D的对称点分别为点 E, F,延长 EB和 FC相交于点 G,求证:四边形 AEGF是正方形;
(2)设 AD= x,建立关于 x的方程模型,求出 AD的长.
如图1, AF, BE是△ ABC的中线, AF⊥ BE,垂足为点 P,设 BC= a, AC= b, AB= c,则 a 2+ b 2=5 c 2,利用这一性质计算.如图2,在▱ ABCD中, E, F, G分别是 AD, BC, CD的中点, EB⊥ EG于点 E, AD=8, AB=2 ,则 AF= .
如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是( )
A.2B. C. D.
如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为( )
A.5B.6C.8D.10
如图,AB=6,O是AB的中点,直线l经过点O,∠1=120°,P是直线l上一点,当△APB为直角三角形时,AP= .
已知,如图,△ ACB和△ ECD都是等腰直角三角形,∠ ACB=∠ ECD=90°, D为 AB边上一点.
(1)求证:△ ACE≌△ BCD;
(2)求证:2 CD 2= AD 2+ DB 2.
如图, CD为⊙ O的直径,弦 AB⊥ CD,垂足为 M,若 AB=12, OM: MD=5:8,则⊙ O的周长为( )
A. |
26π |
B. |
13π |
C. |
|
D. |
|
如图,将半圆形纸片折叠,使折痕 CD与直径 AB平行, 的中点 P落在 OP上的点 P'处,且 OP'= OP,折痕 CD=2 ,则tan∠ COP的值为( )
A. |
|
B. |
|
C. |
|
D. |
|
试题篮
()