如图,在正方形网格上,若使△ABC∽△PBD,则点P应在( )
A.P1处 | B.P2处 | C.P3处 | D.P4处 |
如图,△ABC中,∠B=900,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB边上的C´处,并且C´D∥BC,则CD的长是( )
A. | B. | C. | D. |
如图,小芳和爸爸正在散步,爸爸身高1.8m,他在地面上的影长为2.1m.若小芳比爸爸矮0.3m,则她的影长为( ).
A.1.3m | B.1.65m | C.1.75m | D.1.8m |
如图,在中,,,把边长分别为的个正方形依次放入中,请回答下列问题:
(1)按要求填表
1 |
2 |
3 |
|
|
|
|
(2)第个正方形的边长 ;
(3)若是正整数,且,试判断的关系.
如图,把菱形ABCD沿着BD的方向平移到菱形A/B/C/D/′的位置,
(1)求证:重叠部分的四边形B/EDF/是菱形
(2)若重叠部分的四边形B/EDF/面积是把菱形ABCD面积的一半,且BD=,求则此菱形移动的距离.
如图,已知⊙O的弦CD垂直于直径AB,点E在CD上,且EC =" EB" .
(1)求证:△CEB∽△CBD ;
(2)若CE = 3,CB="5" ,求DE的长.
在和中,,,.
(1)判断这两个三角形是否相似?并说明为什么?
(2)能否分别过在这两个三角形中各作一条辅助线,使分割成的两个三角形与分割成的两个三角形分别对应相似?证明你的结论.
如图,图中的小方格都是边长为1的正方形, △ABC与△A′ B′ C′是关于点0为位似中心的位似图形,它们的顶点都在小正方形的顶点上.
(1)画出位似中心点0;
(2)求出△ABC与△A′B′C′的位似比;
(3)以点0为位似中心,再画一个△A1B1C1,使它与△ABC的位似比等于1.5.
某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图).则小鱼上的点(a,b)对应大鱼上的点是____________________.
如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为 米.
如图,矩形ABCD中,AE⊥BD于E,若BE=4,DE=9,则矩形的面积是______________.
在平面直角坐标系中,已知A(6,3)、B(10,0)两点,以坐标原点O为位似中心,相似比为,把线段AB缩小后得到线段A/B/,则A/B/的长度等于____________.
如图,在Rt△ABC中,∠C=90°,点D是AB边上的一定点,点E是AC上的一个动点,若再增加一个条件就能使△ADE与△ABC相似,则这个条件可以是________________________.
有一张比例尺为1∶4000的地图上,一块多边形地区的周长是60cm,面积是250cm2,则这个地
区的实际周长_________m,面积是___________m2
试题篮
()