在平面直角坐标系中,已知抛物线经过点和点,关于原点对称的抛物线为.
(1)求抛物线的表达式;
(2)点在抛物线上,且位于第一象限,过点作轴,垂足为.若与相似,求符合条件的点的坐标.
周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点,在他们所在的岸边选择了点,使得与河岸垂直,并在点竖起标杆,再在的延长线上选择点,竖起标杆,使得点与点、共线.
已知:,,测得,,.测量示意图如图所示.请根据相关测量信息,求河宽.
某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了"望月阁"及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量"望月阁"的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与"望月阁"底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和"望月阁"之间的直线 上平放一平面镜,在镜面上做了一个标记,这个标记在直线 上的对应位置为点 ,镜子不动,小亮看着镜面上的标记,他来回走动,走到点 时,看到"望月阁"顶端点 在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度 米, 米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从 点沿 方向走了16米,到达"望月阁"影子的末端 点处,此时,测得小亮身高 的影长 米, 米.
如图,已知 , , ,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出"望月阁"的高 的长度.
如图,在横格作业纸(横线等距)上画一条直线,与横格线交于 , , 三点,则 等于
A. |
|
B. |
|
C. |
|
D. |
|
《孙子算经》是中国古代重要的数学著作, 成书于约一千五百年前, 其中有首歌谣: 今有竿不知其长, 量得影长一丈五尺, 立一标杆, 长一尺五寸, 影长五寸, 问竿长几何?意即: 有一根竹竿不知道有多长, 量出它在太阳下的影子长一丈五尺, 同时立一根一尺五寸的小标杆, 它的影长五寸 (提 示: 1 丈 尺, 1 尺 寸) ,则竹竿的长为
A. |
A . 五丈B . 四丈五尺C . 一丈D . 五尺 |
如图,数学活动小组为了测量学校旗杆的高度,使用长为的竹竿作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面处重合,测得,,则旗杆的高为 .
如图,小军、小珠之间的距离为 ,他们在同一盏路灯下的影长分别为 , ,已知小军、小珠的身高分别为 , ,则路灯的高为 .
有一块两条直角边BC、AC的长分别为3厘米和4厘米的Rt△ABC的铁片,现要把它加工成一个面积尽最大的正方形,甲、乙两位师傅加工方案分别如图所示,请用你学过的知识说明哪位师傅的加工方案符合要求(加工中的损耗忽略不计).
如图,小明把手臂水平向前伸直,手持小尺竖直,瞄准小尺的两端E、F,不断调整站立的位置,使在点D处恰好能看到铁塔的顶部B和底部A,设小明的手臂长,小尺长,点D到铁塔底部的距离AD=,则铁塔的高度是__________.
如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1cm/秒,点E运动的速度为2cm/秒.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是( )
A.3秒或4.8秒
B.3秒
C.4.5秒
D.4.5秒或4.8秒
如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60cm长的绑绳EF,tanα=,则“人字梯”的顶端离地面的高度AD是( )
A.144cm | B.180cm | C.240cm | D.360cm |
(年新疆、生产建设兵团)如图,李明打网球时,球恰好打过网,且落在离网4m的位置上,则网球的击球的高度h为 .
试题篮
()