优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 解直角三角形
初中数学

[性质探究]

如图,在矩形 ABCD 中,对角线 AC BD 相交于点 O AE 平分 BAC ,交 BC 于点 E .作 DF AE 于点 H ,分别交 AB AC 于点 F G

(1)判断 ΔAFG 的形状并说明理由.

(2)求证: BF = 2 OG

[迁移应用]

(3)记 ΔDGO 的面积为 S 1 ΔDBF 的面积为 S 2 ,当 S 1 S 2 = 1 3 时,求 AD AB 的值.

[拓展延伸]

(4)若 DF 交射线 AB 于点 F ,[性质探究]中的其余条件不变,连结 EF ,当 ΔBEF 的面积为矩形 ABCD 面积的 1 10 时,请直接写出 tan BAE 的值.

来源:2020年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,正方形 ABOC 的两直角边分别在坐标轴的正半轴上,分别过 OB OC 的中点 D E AE AD 的平行线,相交于点 F ,已知 OB = 8

(1)求证:四边形 AEFD 为菱形.

(2)求四边形 AEFD 的面积.

(3)若点 P x 轴正半轴上(异于点 D ) ,点 Q y 轴上,平面内是否存在点 G ,使得以点 A P Q G 为顶点的四边形与四边形 AEFD 相似?若存在,求点 P 的坐标;若不存在,试说明理由.

来源:2020年浙江省金华市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,有一张矩形纸条 ABCD AB = 5 cm BC = 2 cm ,点 M N 分别在边 AB CD 上, CN = 1 cm .现将四边形 BCNM 沿 MN 折叠,使点 B C 分别落在点 B ' C ' 上.当点 B ' 恰好落在边 CD 上时,线段 BM 的长为   cm ;在点 M 从点 A 运动到点 B 的过程中,若边 M B ' 与边 CD 交于点 E ,则点 E 相应运动的路径长为   cm

来源:2020年浙江省嘉兴市中考数学试卷
  • 题型:未知
  • 难度:未知

已知在 ΔABC 中, AC = BC = m D AB 边上的一点,将 B 沿着过点 D 的直线折叠,使点 B 落在 AC 边的点 P 处(不与点 A C 重合),折痕交 BC 边于点 E

(1)特例感知 如图1,若 C = 60 ° D AB 的中点,求证: AP = 1 2 AC

(2)变式求异 如图2,若 C = 90 ° m = 6 2 AD = 7 ,过点 D DH AC 于点 H ,求 DH AP 的长;

(3)化归探究 如图3,若 m = 10 AB = 12 ,且当 AD = a 时,存在两次不同的折叠,使点 B 落在 AC 边上两个不同的位置,请直接写出 a 的取值范围.

来源:2020年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 AB O 的直径, BC O 相切于点 B ,连接 AC OC .若 sin BAC = 1 3 ,则 tan BOC =   

来源:2020年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, C = 90 ° ,点 D AC 上, DBC = A .若 AC = 4 cos A = 4 5 ,则 BD 的长度为 (    )

A. 9 4 B. 12 5 C. 15 4 D.4

来源:2020年安徽省中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 相切于点 B AO O 于点 C AO 的延长线交 O 于点 D E BCD ̂ 上不与 B D 重合的点, sin A = 1 2

(1)求 BED 的大小;

(2)若 O 的半径为3,点 F AB 的延长线上,且 BF = 3 3 ,求证: DF O 相切.

来源:2020年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 O 中, AB O 的直径, C O 上一点, P BC ̂ 的中点,过点 P AC 的垂线,交 AC 的延长线于点 D ,连接 OP

(1)求证: DP O 的切线;

(2)若 AC = 5 sin APC = 5 13 ,求 AP 的长.

来源:2020年新疆生产建设兵团中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, A = 90 ° B = 60 ° AB = 2 ,若 D BC 边上的动点,则 2 AD + DC 的最小值为  

来源:2020年新疆生产建设兵团中考数学试卷
  • 题型:未知
  • 难度:未知

将一个直角三角形纸片 OAB 放置在平面直角坐标系中,点 O ( 0 , 0 ) ,点 A ( 2 , 0 ) ,点 B 在第一象限, OAB = 90 ° B = 30 ° ,点 P 在边 OB 上(点 P 不与点 O B 重合).

(Ⅰ)如图①,当 OP = 1 时,求点 P 的坐标;

(Ⅱ)折叠该纸片,使折痕所在的直线经过点 P ,并与 x 轴的正半轴相交于点 Q ,且 OQ = OP ,点 O 的对应点为 O ' ,设 OP = t

①如图②,若折叠后△ O ' PQ ΔOAB 重叠部分为四边形, O ' P O ' Q 分别与边 AB 相交于点 C D ,试用含有 t 的式子表示 O ' D 的长,并直接写出 t 的取值范围;

②若折叠后△ O ' PQ ΔOAB 重叠部分的面积为 S ,当 1 t 3 时,求 S 的取值范围(直接写出结果即可).

来源:2020年天津市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, BAC = 90 ° AB = AC ,点 D BC 边上一动点,连接 AD ,把 AD 绕点 A 逆时针旋转 90 ° ,得到 AE ,连接 CE DE .点 F DE 的中点,连接 CF

(1)求证: CF = 2 2 AD

(2)如图2所示,在点 D 运动的过程中,当 BD = 2 CD 时,分别延长 CF BA ,相交于点 G ,猜想 AG BC 存在的数量关系,并证明你猜想的结论;

(3)在点 D 运动的过程中,在线段 AD 上存在一点 P ,使 PA + PB + PC 的值最小.当 PA + PB + PC 的值取得最小值时, AP 的长为 m ,请直接用含 m 的式子表示 CE 的长.

来源:2020年重庆市中考数学试卷(a卷)
  • 题型:未知
  • 难度:未知

如图1,在矩形 ABCD 中, AB = 5 BC = 8 ,点 E F 分别为 AB CD 的中点.

(1)求证:四边形 AEFD 是矩形;

(2)如图2,点 P 是边 AD 上一点, BP EF 于点 O ,点 A 关于 BP 的对称点为点 M ,当点 M 落在线段 EF 上时,则有 OB = OM .请说明理由;

(3)如图3,若点 P 是射线 AD 上一个动点,点 A 关于 BP 的对称点为点 M ,连接 AM DM ,当 ΔAMD 是等腰三角形时,求 AP 的长.

来源:2020年云南省昆明市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, AB = AC O ΔABC 的外接圆, BO 的延长线交边 AC 于点 D

[小题1]求证: BAC = 2 ABD

[小题2]当 ΔBCD 是等腰三角形时,求 BCD 的大小;

[小题3]当 AD = 2 CD = 3 时,求边 BC 的长.

来源:2020年上海市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在直角梯形 ABCD 中, AB / / DC DAB = 90 ° AB = 8 CD = 5 BC = 3 5

(1)求梯形 ABCD 的面积;

(2)联结 BD ,求 DBC 的正切值.

[小题1]求梯形 ABCD 的面积;

[小题2]联结 BD ,求 DBC 的正切值.

来源:2020年上海市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = 4 BC = 7 B = 60 ° ,点 D 在边 BC 上, CD = 3 ,联结 AD .如果将 ΔACD 沿直线 AD 翻折后,点 C 的对应点为点 E ,那么点 E 到直线 BD 的距离为  

来源:2020年上海市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学解直角三角形试题