以下结论不正确的是 ( )
A.根据2×2列联表中的数据计算得出K2≥6.635, 而P(K2≥6.635)≈0.01,则有99%的把握认为两个分类变量有关系 |
B.在线性回归分析中,相关系数为r,|r|越接近于1,相关程度越大;|r| 越小,相关程度越小 |
C.在回归分析中,相关指数R2越大,说明残差平方和越小,回归效果越好 |
D.在回归直线中,变量x=200时,变量y的值一定是15 |
假设学生在初一和初二数学成绩是线性相关的,若10个学生初一(x)和初二(y)数学分数如下:
x |
74 |
71 |
72 |
68 |
76 |
73 |
67 |
70 |
65 |
74 |
y |
76 |
75 |
71 |
70 |
76 |
79 |
65 |
77 |
62 |
72 |
则初一和初二数学分数间的回归方程是 ( ).
A. =1.218 2x-14.192 B.=14.192x+1.218 2
C. =1.218 2x+14.192 D. =14.192x-1.218 2
由于当前学生课业负担较重,造成青少年视力普遍下降,现从某高中随机抽取16名学生,经校医用对数视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如下:
(Ⅰ)指出这组数据的众数和中位数;
(Ⅱ)若视力测试结果不低丁5.0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;
(Ⅲ)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记表示抽到“好视力”学生的人数,求的分布列及数学期望.
某单位为了了解办公楼用电量(度)与气温(oC)之间的关系,随机统计了四个工作日的用电量
与当天平均气温,并制作了对照表:
气温(oC) |
||||
用电量(度) |
由表中数据得到线性回归方程,当气温为时,预测用电量约为
A.度 B.度 C.度 D.度
甲乙丙丁四位同学各自对两变量的线性相关性进行分析,并用回归分析方法得到相关系数与残差平方和,如右表则哪位同学的试验结果体现两变量更强的线性相关性( )
|
甲 |
乙 |
丙 |
丁 |
A 甲 B 乙 C 丙 D 丁
某城市近10年居民的年收入与支出之间的关系大致符合(单位:亿元),预计今年该城市居民年收入为20亿元,则今年支出估计是 亿元.
一名小学生的年龄和身高(单位:cm)的数据如下表:
由散点图可知,身高与年龄之间的线性回归方程为,则的值为( )
A.65 | B.74 | C.56 | D.47 |
我国科研人员屠呦呦法相从青篙中提取物青篙素抗疟性超强,几乎达到100%,据监测:服药后每毫升血液中的含药量y(微克)与时间r(小时)之间近似满足如图所示的曲线
(1)写出第一服药后y与t之间的函数关系式y=f(x);
(2)据进一步测定:每毫升血液中含药量不少于微克时,治疗有效,求服药一次后治疗有效的时间是多长?
某产品的广告费用x与销售额y的统计数据如下表:根据上表可得回归方程=x+a中的b=10.6,据此模型预报广告费用为10万元时销售额为( )
广告费用x(万元) |
4 |
2 |
3 |
5 |
销售额y(万元) |
49 |
26 |
39 |
58 |
A.112.1万元 B.113.1万元 C.111.9万元 D.113.9万元
某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如右数据:
单价(元) |
8 |
8.2 |
8.4 |
8.6 |
8.8 |
9 |
销量 (件) |
90 |
84 |
83 |
80 |
75 |
68 |
由表中数据,求得线性回归方程为.若在这些样本点中任取一点,则它在回归直线左下方的概率为_______.
观察下列关于两个变量和的三个散点图,它们从左到右的对应关系依次为( ).
A.正相关、负相关、不相关 |
B.负相关、不相关、正相关 |
C.负相关、正相关、不相关 |
D.正相关、不相关、负相关 |
试题篮
()