优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 变量间的相关关系
高中数学

某单位为了了解用电量(度)与当天平均气温(°C)之间的关系,随机统计了某4天的当天平均气温与用电量(如右表)。由数据运用最小二乘法得线性回归方程,则__________.

平均气温(°C)
18
13
10
-1
用电量(度)
25
35
37
63

 

  • 题型:未知
  • 难度:未知

某公司的广告费支出x与销售额y(单位:万元)之间有下列对应数据

x
2
4
5
6
8
y
30
40
60
50
70

 
(1)画出散点图,并判断广告费与销售额是否具有相关关系;
(2)根据表中提供的数据,用最小二乘法求出y与x的回归方程
(3)预测销售额为115万元时,大约需要多少万元广告费。
参考公式:回归方程为其中

  • 题型:未知
  • 难度:未知

下列关于回归分析的说法正确的是           (填上所有正确说法的序号)
①相关系数越小,两个变量的相关程度越弱;②残差平方和越大的模型,拟合效果越好;③用相关指数来刻画回归效果时,越小,说明模型的拟合效果越好;④用最小二乘法求回归直线方程,是寻求使取最小值时的的值;⑤在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,这样的带状区域的宽度越窄,模型拟合精度越高.

  • 题型:未知
  • 难度:未知

经过长期的观测得到:在交通繁忙的时段内,蚌埠市解放路某路段汽车的车流量(千辆/h)与汽车的平均速度)之间的函数关系为
(1)在该时段内,当汽车的平均速度为多少时车流量最大,最大车流量为多少?(精确到0.1千辆/h)
(2)若要求在该时段内车流量超过10千辆/h,则汽车的平均速度应在什么范围内?

  • 题型:未知
  • 难度:未知

人们在生活和消费过程中的过量碳排放,是造成全球气候变暖的重要因素之一,所谓“低碳生活”就是指生活作息时所耗用的能量要尽力减少,从而减低二氧化碳的排放量.某单位为了制定节能减排的目标,先调查了用电量(度)与气温)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:

气温(
18
13
10

用电量(度)
24
34
38
64

 
由表中数据,得线性回归方程,当气温为时,预测用电量的度数约为          

  • 题型:未知
  • 难度:未知

对于下列表格所示的五个散点,已知求得的线性回归直线方程为=0.8x-155.

x
196
197
200
203
204
y
1
3
6
7
m

 
则实数m的值为(   )
A.8.4     B.8.2    C.8       D.8.5

  • 题型:未知
  • 难度:未知

(本小题满分10分)某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在30分以下的学生后,共有男生300名,女生200名.现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表.

分数段
[40,50)
[50,60)
[60,70)
[70,80)
[80,90)
[90,100]

3
9
18
15
6
9

6
4
5
10
13
2

 
估计男、女生各自的成绩平均分(同一组数据用该组区间中点值作代表),从计算结果看,判断数学成绩与性别是否有关;

 
优分
非优分
合计
男生
 
 
 
女生
 
 
 
合计
 
 
100

 
(2)规定80分以上为优分(含80分),请你根据已知条件作出列联表,并判断是否有以上的把握认为“数学成绩与性别有关”.
附表及公式


0.100
0.050
0.010
0.001

2.706
3.841
6.635
10.828

  • 题型:未知
  • 难度:未知

已知x,y取值如表:

x
0
1
4
5
6
7
8
9
y
1.3
1.8
5.6
6.1
7.4
9.0
9.3
9.1

 
从所得的散点图分析可知,y与x线性相关,且y=0.95x+a,则a=( )
A.1.30                  B.1.45                   C.1.65                 D.1.80

  • 题型:未知
  • 难度:未知

.已知某种产品的支出广告额与利润额(单位:万元)之间有如下对应数据:

x
3
4
5
6
7
y
20
30
30
40
60

则回归直线方程必过( )
A.(5,30)         B.(4,30)         C.(5,35)      D.(5,36)

  • 题型:未知
  • 难度:未知

一名小学生的年龄和身高(单位:cm)的数据如下表:

由散点图可知,身高与年龄之间的线性回归方程为,则的值为( )

A.65 B.74 C.56 D.47
  • 题型:未知
  • 难度:未知

我国科研人员屠呦呦法相从青篙中提取物青篙素抗疟性超强,几乎达到100%,据监测:服药后每毫升血液中的含药量y(微克)与时间r(小时)之间近似满足如图所示的曲线

(1)写出第一服药后y与t之间的函数关系式y=f(x);
(2)据进一步测定:每毫升血液中含药量不少于微克时,治疗有效,求服药一次后治疗有效的时间是多长?

  • 题型:未知
  • 难度:未知

某产品的广告费用x与销售额y的统计数据如下表:根据上表可得回归方程=x+a中的b=10.6,据此模型预报广告费用为10万元时销售额为( )

广告费用x(万元)
4
2
3
5
销售额y(万元)
49
26
39
58

A.112.1万元       B.113.1万元       C.111.9万元        D.113.9万元

  • 题型:未知
  • 难度:未知

以模型去拟合一组数据时,为了求出回归方程,设,其变换后得到线性回归方程,则(  )

A.0.3 B. C.4 D.
  • 题型:未知
  • 难度:未知

某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如右数据:

单价(元)
8
8.2
8.4
8.6
8.8
9
销量 (件)
90
84
83
80
75
68

 
由表中数据,求得线性回归方程为.若在这些样本点中任取一点,则它在回归直线左下方的概率为_______.

  • 题型:未知
  • 难度:未知

一个物体的运动方程为其中的单位是米,的单位是秒,那么物体在秒末的瞬时速度是(   )

A.5米/秒 B.6米/秒 C.7米/秒 D.米/秒
  • 题型:未知
  • 难度:未知

高中数学变量间的相关关系试题