.三点(3,10),(7,20),(11,24)的回归方程是
A.y=5-17x | B.y=-17+5x |
C. y=17+5x | D. y=17-5x |
下列关系中,具有相关关系的是( )
A.人的身高与体重; | B.匀速行驶的车辆所行驶距离与行驶的时间; |
C.人的身高与视力; | D.正方体的体积与边长. |
设某大学的女生体重(单位:)与身高(单位:)具有线性相关关系,根据一组样本数据,用最小二乘法建立的回归方程为,则下列结论中不正确的是( )
A.与具有正的线性相关关系 |
B.回归直线过样本点的中心 |
C.若该大学某女生身高增加lcm,则其体重约增加0.85kg |
D.若该大学某女生身高为170cm,则可断定其体重必为58.79kg |
对四组数据进行统计,获得以下散点图,关于其线性相关系数比较,正确的是( )
线性相关系数为 线性相关系数为
线性相关系数为 线性相关系数为
A. | B. |
C. | D. |
设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是( ).
A.y与x具有正的线性相关关系 |
B.回归直线过样本点的中心(,) |
C.若该大学某女生身高增加1 cm,则其体重约增加0.85 kg |
D.若该大学某女生身高为170 cm,则可断定其体重必为58.79 kg |
下列两变量中不存在相关关系的是
①人的身高与视力;②曲线上的点与该点的坐标之间的关系;③某农田的水稻产量与施肥量;④某同学考试成绩与复习时间的投入量;⑤匀速行驶的汽车的行驶的距离与时间;⑥家庭收入水平与纳税水平;⑦商品的销售额与广告费.
A.①②⑤ | B.①③⑦ | C.④⑦⑤ | D.②⑥⑦ |
某科研所共有职工人,其年龄统计表如下:由于电脑故障,有两个数字在表格中不能显示出来,则下列说法正确的是( )
A.年龄数据的中位数是,众数是 |
B.年龄数据的中位数和众数一定相等 |
C.年龄数据的平均数 |
D.年龄数据的平均数一定大于中位数 |
下列判断中不正确的是( )
A.为变量间的相关系数,值越大,线性相关程度越高 |
B.在平面直角坐标系中,可以用散点图发现变量之间的变化规律 |
C.线性回归方程代表了观测值、之间的关系 |
D.任何一组观测值都能得到具有代表意义的回归直线方程 |
下列函数中,随x(x>0)的增大,增长速度最快的是( )
A.y =1,x∈Z | B.y=x | C.y= | D.y= |
对具有线性相关关系的变量x,y有一组观测数据(xi,yi)( i=1,2,…,8),其回归直线方程是=x+a且x1+x2+…+x8=6,y1+y2+…+y8=3,则实数a的值是( )
A. | B. | C. | D. |
经统计,用于数学学习的时间(单位:小时)与成绩(单位:分)近似于线性相关关系.对某小组学生每周用于数学的学习时间与数学成绩进行数据收集如下:
x |
15 |
16 |
18 |
19 |
22 |
y |
102 |
98 |
115 |
115 |
120 |
由表中样本数据求得回归方程为,则点与直线的位置关系是( )
A.点在直线左侧 B.点在直线右侧 C.点在直线上 D.无法确定
为了评价某个电视栏目的改革效果,在改革前后分别从某居民点抽取了1000位居民进行调查,经过计算得K24.358,根据这一数据分析,下列说法正确的是( )
A.有95%的人认为该栏日优秀 |
B.有95%的人认为该栏目是否优秀与改革有关系 |
C.有95%的把握认为电视栏目是否优秀与改革有关系 |
D.没有理由认为电视栏目是否优秀与改革有关系 |
试题篮
()