下列说法错误的是( )
A.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系; |
B.线性回归方程对应的直线=x+至少经过其样本数据(x1,y1),(x2,y2),,(xn,yn)中的一个点; |
C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高; |
D.在回归分析中,为0.98的模型比为0.80的模型拟合的效果好. |
给出以下四个说法:
①在匀速传递的产品生产流水线上,质检员每间隔分钟抽取一件产品进行某项指标的检测 ,这样的抽样是分层抽样;
②在刻画回归模型的拟合效果时,相关指数的值越大,说明拟合的效果越好;
③在回归直线方程中,当解释变量每增加一个单位时,预报变量平均增加个单位;
④对分类变量与,若它们的随机变量的观测值越小,则判断“与有关系”的把握程度越大.
其中正确的说法是
A.①④ | B.②④ | C.①③ | D.②③ |
汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲,乙,丙三辆汽车在不同速度下的燃油效率情况,下列叙述中正确的是( )
A.消耗1升汽油,乙车最多可行驶5千米 |
B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多 |
C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油 |
D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油 |
设有一个线性回归直线方程为,则变量每增加一个单位时( )
A.平均增加 1.5 个单位 | B.平均增加 2 个单位 |
C.平均减少 1.5 个单位 | D.平均减少 2 个单位 |
设某大学的女生体重(单位:)与身高(单位:)具有线性相关关系,根据一组样本数据(),用最小二乘法建立的回归方程为,则下列结论中不正确的是( )
A.与具有正的线性相关关系 |
B.回归直线过样本点的中心 |
C.若该大学某女生身高增加,则其体重约增加 |
D.若该大学某女生身高为,则可断定其体重为 |
某产品的广告费用x与销售额y的统计数据如下表:
广告费用x(万元) |
4 |
2 |
3 |
5 |
销售额y(万元) |
49 |
26 |
39 |
54 |
据上表得回归方程为9.4,据此预报广告费用为6万元时销售额约为( )
A、63.6万元 B、65.5万元 C、67.7万元 D、72.0万元
一名小学生的年龄和身高(单位:cm)的数据如下表:
由散点图可知,身高与年龄之间的线性回归方程为,则的值为( )
A.65 | B.74 | C.56 | D.47 |
为了解某商品销售量(单位:件)与销售价格(单位:元/件)的关系,统计了()的10组值,并画成散点图如图,则其回归方程可能是
A. |
B. |
C. |
D. |
对于下列表格所示的五个散点,已知求得的线性回归直线方程为=0.8x-155.
x |
196 |
197 |
200 |
203 |
204 |
y |
1 |
3 |
6 |
7 |
m |
则实数m的值为( )
A.8.4 B.8.2 C.8 D.8.5
下列反映两个变量的相关关系中,不同于其它三个的是
A.名师出高徒 | B.水涨船高 | C.月明星稀 | D.登高望远 |
若变量与之间的相关系数,则变量与之间
A.不具有线性相关关系 |
B.具有线性相关关系 |
C.它们的线性相关关系还需要进一步确定 |
D.不确定 |
已知变量与正相关,且由观测数据算得样本平均数,,则由该观测数据算得的线性回归方程可能是( )
A. | B. | C. | D. |
某小卖部销售一品牌饮料的零售价x(元/评)与销售量y(瓶)的关系统计如下:
零售价x(元/瓶) |
3.0 |
3.2 |
3.4 |
3.6 |
3.8 |
4.0 |
销量y(瓶) |
50 |
44 |
43 |
40 |
35 |
28 |
已知的关系符合线性回归方程,其中.当单价为4.2元时,估计该小卖部销售这种品牌饮料的销量为( )
A.20 B.22 C.24 D.26
试题篮
()