某次运动会甲、乙两名射击运动员成绩如下:
甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8;
乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;
(1)用茎叶图表示甲,乙两个成绩;
(2)根据茎叶图分析甲、乙两人成绩;
(3)分别计算两个样本的平均数和标准差s,并根据计算结果估计哪位运动员的成绩比较稳定.
甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(Ⅰ)用茎叶图表示这两组数据;若将频率视为概率,对甲学生在培训后参加的一次数学竞赛成绩进行预测,求甲的成绩高于80分的概率;
(Ⅱ)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由
在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人。女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动。
(1)根据以上数据建立一个2×2的列联表;
(2)判断性别与休闲方式是否有关系。
参考数据
0.50 |
0.40 |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
0. 455 |
0.708 |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(本小题满分12分)第16届亚运会将于2010年11月12日至27日在中国广州进行,为了搞好接待工作,组委会招募了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余不喜爱。
(1)根据以上数据完成以下2×2列联表:
|
喜爱运动 |
不喜爱运动 |
总计 |
男 |
10 |
|
16 |
女 |
6 |
|
14 |
总计 |
|
|
30 |
(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关?
(3)从女志原者中抽取2人参加接待工作,若其中喜爱运动的人数为,求的分布列和均值。
参考公式:,其中
参考数据:
0.40 |
0.25 |
0.10 |
0.010 |
|
0.708 |
1.323 |
2.706 |
6.635 |
某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期 |
1月10日 |
2月10日 |
3月10日 |
4月10日 |
5月10日 |
6月10日 |
昼夜温差 |
10 |
11 |
13 |
12 |
8 |
6 |
就诊人数(个) |
22 |
25 |
29 |
26 |
16 |
12 |
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验。
(Ⅰ)求选取的2组数据恰好是相邻两个月的概率;
若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程;
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
(参考数据:11×25+13×29+12×26+8×16=1092,)
为了探究患慢性气管炎与吸烟有无关系,调查了却名岁以上的人,结果如下表所示,据此数据请问:岁以上的人患慢性气管炎与吸烟习惯有关系吗?
|
患慢性气管炎 |
未患慢性气管炎 |
合计 |
吸烟 |
43 |
162 |
205 |
不吸烟 |
13 |
121 |
134 |
合计 |
56 |
283 |
339 |
某种产品表面进行腐蚀性试验,得到腐蚀深度与腐蚀时间之间对应的一组数据:
时间 |
深度 |
5 |
6 |
10 |
10 |
15 |
10 |
20 |
13 |
30 |
16 |
40 |
17 |
50 |
19 |
60 |
23 |
70 |
25 |
90 |
29 |
120 |
46 |
(1)试求腐蚀深度对时间的回归直线方程;
(2)预测腐蚀时间为80 s时产品腐蚀的深度大约是多少?
已知10只狗的血球体积及红血球的测量值如下
45 |
6.53 |
42 |
6.30 |
46 |
9.25 |
48 |
7.50 |
42 |
6.99 |
35 |
5.90 |
58 |
9.49 |
40 |
6.20 |
39 |
6.55 |
50 |
7.72 |
(血球体积,mm),(红血球数,百万)
(1) 画出上表的散点图;
(2)求出回归直线并且画出图形;
(3)若血球体积为49mm,预测红血球数大约是多少?
试题篮
()