在线性回归模型中,下列说法正确的是( )
A.是一次函数 |
B.因变量是由自变量唯一确定的 |
C.因变量除了受自变量的影响外,可能还受到其它因素的影响,这些因素会导致随机误差的产生 |
D.随机误差是由于计算不准确造成的,可以通过精确计算避免随机误差的产生 |
某单位为了了解用电量(千瓦时)与气温()之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:
气温() |
18 |
13 |
10 |
|
用电量(千瓦时) |
24 |
34 |
38 |
64 |
由表中数据得线性回归方程中,预测当气温为时,用电量约为( )
A.58千瓦时 B.66千瓦时 C.68千瓦时 D.70千瓦时
已知x、y的取值如下表所示,若y与x线性相关,且=0.95x+,则=____________.
x |
0 |
1 |
3 |
4 |
y |
2.2 |
4.3 |
4.8 |
6.7 |
两个变量与的回归模型中,分别选择了4个不同模型,它们的相关指数如下,其中拟合效果最好的模型是( )
A.模型1的相关指数为0.98 | B.模型2的相关指数为0.80 |
C.模型3的相关指数为0.50 | D.模型4的相关指数为0.25 |
某产品在某零售摊位的零售价x(单位:元)与每天的销售量y(单位:个)的统计资料如下表所示:由上表可得回归直线方程中的,据此模型预测零售价为15元时,每天的销售量为 .
对相关系数r,下列说法正确的是
A.越大,线性相关程度越大 |
B.越小,线性相关程度越大 |
C.越大,线性相关程度越小,越接近0,线性相关程度越大 |
D.且越接近1,线性相关程度越大,越接近0,线性相关程度越小 |
已知x,y的取值如下表所示,若y与x线性相关,且
x |
0 |
1 |
3 |
4 |
2.2 |
4.3 |
4.8 |
6.7 |
A.2.2 B.2.6 C.2.8 D.2.9
有下列关系:
①人的年龄与他(她)拥有的财富之间的关系;
②曲线上的点与该点的坐标之间的关系;
③苹果的产量与气候之间的关系;
④森林中的同一种树木,其横断面直径与高度之间的关系,
其中有相关关系的是( )
A.①②③ | B.①② | C.②③ | D.①③④ |
人们在生活和消费过程中的过量碳排放,是造成全球气候变暖的重要因素之一,所谓“低碳生活”就是指生活作息时所耗用的能量要尽力减少,从而减低二氧化碳的排放量.某单位为了制定节能减排的目标,先调查了用电量(度)与气温()之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:
气温() |
18 |
13 |
10 |
|
用电量(度) |
24 |
34 |
38 |
64 |
由表中数据,得线性回归方程,当气温为时,预测用电量的度数约为 .
根据如下样本数据:
3 |
4 |
5 |
6 |
7 |
8 |
|
4.0 |
2.5 |
-0.5 | 0.5 |
-2.0 | -3.0 |
得到的回归方程为,则( )
A. , B. ,
C. , D. ,
已知变量 与 正相关,且由观测数据算得样本平均数 ,则由该观测的数据算得的线性回归方程可能是
A. | B. | ||
C. | D. |
某班主任对全班50名学生进行了作业量多少的调查,数据如下表:
|
认为作业多 |
认为作业不多 |
总数 |
喜欢玩电脑游戏 |
18 |
9 |
27 |
不喜欢玩电脑游戏 |
8 |
15 |
23 |
总数 |
26 |
24 |
50 |
根据表中数据得到5.059,因为p(K≥5.024)=0.025,
则认为喜欢玩电脑游戏与认为作业量的多少有关系的把握大约为( )
(A)97.5% (B) 95% (C)90% (D)无充分根据
某产品的广告费用x与销售额y的统计数据如表:
广告费用x(万元) |
4 |
2 |
3 |
5 |
销售额y(万元) |
49 |
26 |
39 |
54 |
根据上表可得回归方程,其中=9.4,据此模型预报广告费用为6万元时,销售额为 ( )
A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元
试题篮
()