(本小题满分12分)某地区2007年至2013年农村居民家庭纯收入(单位:千元)的数据如下表:
年份 |
2007 |
2008 |
2009 |
2010 |
2011 |
2012 |
2013 |
年份代号 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
人均纯收入 |
2.9 |
3.3 |
3.6 |
4.4 |
4.8 |
5.2 |
5.9 |
(Ⅰ)求关于的线性回归方程;(已知b=0.5)
(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
(满分12分)假设关于某设备的使用年限和所支出的维修费用(万元)有如下的统计资料:
使用年限 |
|||||
维修费用 |
若由资料知对呈线性相关关系。
(1)请画出上表数据的散点图;
(2)请根据最小二乘法求出线性回归方程的回归系数,.
(3)估计使用年限为年时,维修费用是多少?
,
(满分12分)假设关于某设备的使用年限和所支出的维修费用(万元)有如下的统计资料:
使用年限 |
|||||
维修费用 |
若由资料知对呈线性相关关系。
(1)请画出上表数据的散点图;
(2)请根据最小二乘法求出线性回归方程的回归系数,.
(3)估计使用年限为年时,维修费用是多少?
,
为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为,众数为,平均值为,则( )
A. | B. |
C. | D. |
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作四次试验,得到的数据如下:
零件的个数x(个) |
2 |
3 |
4 |
5 |
加工的时间y(小时) |
2.5 |
3 |
4 |
4.5 |
(1)已知零件个数与加工时间线性相关,求出y关于x的线性回归方程;
(2)试预测加工10个零件需要多少时间?
观察下列关于两个变量和的三个散点图,它们从左到右的对应关系依次为( )
A.正相关、负相关、不相关 | B.负相关、不相关、正相关 |
C.负相关、正相关、不相关 | D.正相关、不相关、负相关 |
对具有线性相关关系的变量和,测得一组数据如下:
x |
2 |
4 |
5 |
6 |
8 |
y |
30 |
40 |
60 |
50 |
70 |
若已求得它们的回归方程的斜率为6.5,则这条直线的回归方程为 .
下表数据是水温度x(℃)对黄酮延长性y(%)效应的试验结果,y是以延长度计算的,且对于给定的x,y为变量.
x(℃) |
300 |
400 |
500 |
600 |
700 |
800 |
y(%) |
40 |
50 |
55 |
60 |
67 |
70 |
(1)求y关于x的回归方程;
(2)估计水温度是1 000 ℃时,黄酮延长性的情况.
(可能用到的公式:,,其中、是对回归直线方程中系数、按最小二乘法求得的估计值)
四名同学根据各自的样本数据研究变量之间的相关关系,并求得回归直线方程,分别得到以下四个结论:
①y与x负相关且;
②y与x负相关且;
③y与x正相关且;
④y与x正相关且.
其中一定不正确的结论的序号是 ( )
A.①② | B.②③ | C.③④ | D.①④ |
某市电力公司在电力供不应求时期,为了居民节约用电,采用“阶梯电价”方法计算电价,每月用电不超过度时,按每度元计费,每月用电超过度时,超过部分按每度元计费,每月用电超过度时,超过部分按每度元计费.
(1)设每月用电度,应交电费元,写出关于的函数;
(2)已知小王家第一季度缴费情况如下:
月份 |
1 |
2 |
3 |
合计 |
缴费金额 |
87元 |
62元 |
45元8角 |
194元8角 |
问:小王家第一季度共用了多少度电?
生产,两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:
测试指标 |
|||||
元件 |
8 |
12 |
40 |
32 |
8 |
元件 |
7 |
18 |
40 |
29 |
6 |
(Ⅰ)试分别估计元件、元件为正品的概率;
(Ⅱ)生产一件元件,若是正品可盈利50元,若是次品则亏损10元;生产一件元件,若是正品可盈利100元,若是次品则亏损20元,在(Ⅰ)的前提下
(i)求生产5件元件所获得的利润不少于300元的概率;
(ii)记为生产1件元件和1件元件所得的总利润,求随机变量的分布列和期望.
试题篮
()