优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用
高中数学

是两个不同的平面,是一条直线,以下命题正确的是(    )

A.若,则 B.若,则
C.若,则 D.若,则
  • 题型:未知
  • 难度:未知

已知为异面直线,平面,平面.平面α与β外的直线满足,则( )

A.,且 B.,且
C.相交,且交线垂直于 D.相交,且交线平行于
  • 题型:未知
  • 难度:未知

已知是两条不同的直线,是两个不同的平面,则下列命题中不正确的是(  )

A.若
B.若
C.若,则
D.若,则
  • 题型:未知
  • 难度:未知

如图所示,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是              (  ).

A.AC⊥SB
B.AB∥平面SCD
C.SA与平面SBD所成的角等于SC与平面SBD所成的角
D.AB与SC所成的角等于DC与SA所成的角
  • 题型:未知
  • 难度:未知

下列四个命题中,正确命题的个数是(    )个
① 若平面平面,直线平面,则
② 若平面平面,且平面平面,则
③平面平面,且,点,若直线,则
④直线为异面直线,且平面平面,若,则.

A. B. C. D.
  • 题型:未知
  • 难度:未知

已知直线与平面,满足,则必有( )

A. B. C. D.
  • 题型:未知
  • 难度:未知

已知是两条不同直线, 是三个不同平面,则下列正确的是( )

A.若,则
B.若,则
C.若,则
D.若,则
  • 题型:未知
  • 难度:未知

为直线,是两个不同的平面,下列命题中正确的是(   )

A.若,,则
B.若,,则
C.若,,则
D.若,,则
  • 题型:未知
  • 难度:未知

[2014·深圳调研]如图,在四面体D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列正确的是(  )

A.平面ABC⊥平面ABD
B.平面ABD⊥平面BDC
C.平面ABC⊥平面BDE,且平面ADC⊥平面BDE
D.平面ABC⊥平面ADC,且平面ADC⊥平面BDE
  • 题型:未知
  • 难度:未知

[2013·广东高考]设m,n是两条不同的直线,α,β是两个不同的平面.下列命题中正确的是(  )

A.若α⊥β,m⊂α,n⊂β,则m⊥n
B.若α∥β,m⊂α,n⊂β,则m∥n
C.若m⊥n,m⊂α,n⊂β,则α⊥β
D.若m⊥α,m∥n,n∥β,则α⊥β
  • 题型:未知
  • 难度:未知

[2014·长春质检]如图,四棱锥P-ABCD的底面是一直角梯形,AB∥CD,BA⊥AD,CD=2AB,PA⊥底面ABCD,E为PC的中点,则BE与平面PAD的位置关系为________.

  • 题型:未知
  • 难度:未知

[2014·福州质检]对于平面α和共面的直线m,n,下列命题是真命题的是(  )

A.若m,n与α所成的角相等,则m∥n
B.若m∥α,n∥α,则m∥n
C.若m⊥α,m⊥n,则n∥α
D.若m⊂α,n∥α,则m∥n
  • 题型:未知
  • 难度:未知

[2013·安徽高考]在下列命题中,不是公理的是(  )

A.平行于同一个平面的两个平面相互平行
B.过不在同一条直线上的三点,有且只有一个平面
C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内
D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
来源:2015数学一轮复习迎战高考:7-3空间点、直线、平面之间的位置关系
  • 题型:未知
  • 难度:未知

已知三条不重合的直线和两个不重合的平面,下列命题正确的是(   )

A.若,则
B.若,且,则
C.若,则
D.若,且,则
  • 题型:未知
  • 难度:未知

如图,四棱锥中,底面
(1)求证:平面
(2)若侧棱上的点满足,求三棱锥的体积.

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用试题