(本小题满分14分)如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a.
(1)求证:MN∥平面PAD;
(2)求证:平面PMC⊥平面PCD.
(本小题满分12分)如图,在四棱锥中,底面为矩形,侧面底面,.
(1)求证:面;
(2)设为等边三角形,求直线与平面所成角的大小.
若、、是互不相同的空间直线,α、β是不重合的平面,则下列结论正确的是
A. |
B. |
C. |
D. |
(本小题满分12分)如图1,在直角梯形中,,,点为线段的中点,将沿折起,使平面平面,得到几何体,如图2所示.
(Ⅰ)求证:平面;
【理】(Ⅱ)求二面角的余弦值.
【文】(Ⅱ)求点到平面的距离.
(本小题12分)如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
(1)求证:AC⊥平面BDE;
(2)求二面角FBED的余弦值.
(本小题满分12分)在三棱锥M-ABC中,AB=2AC=2,MA=MB=,AB=4AN,AB^AC,平面MAB^平面ABC,S为BC的中点.
(1)证明:CM^SN;
(2)求SN与平面CMN所成角的大小.
(本小题满分16分)在四棱锥中,平面,是正三角形,与的交点恰好是中点,又,,点在线段上,且.
(1)求证:;
(2)求证:∥平面;
(3)求二面角的余弦值.
(本小题满分13分)
如图,在四棱锥中,底面四边长为1的菱形,, , ,为的中点,为的中点
(Ⅰ)证明:直线;
(Ⅱ)求异面直线AB与MD所成角的大小;
(Ⅲ)求点B到平面OCD的距离。
试题篮
()