)如图:在三棱柱中,已知,.四边形为正方形,设的中点为D,求证
(1);
(2)
(本小题满分12分)在如图所示的几何体中,四边形是正方形,平面,,、、分别为、、的中点,且.
(1)求证:平面平面;
(2)求三棱锥与四棱锥的体积之比.
(本小题满分12分)已知四边形为平行四边形,,,,四边形为正方形,且平面平面.
(1)求证:平面;
(2)若为中点,证明:在线段上存在点,使得∥平面,并求出此时三棱锥的体积.
(本小题满分12分)如图,矩形所在的平面与等边所在的平面垂直,,为的中点.
(1)求证:;
(2)求二面角的余弦值.
下列四个命题中错误的是( )
A.若直线、互相平行,则直线、确定一个平面 |
B.若四点不共面,则这四点中任意三点都不共线 |
C.若两条直线没有公共点,则这两条直线是异面直线 |
D.两条异面直线不可能垂直于同一个平面 |
(本小题满分12分)
如图,已知四棱锥中,平面,底面是正方形,、分别为、的中点.
(1)求证:平面;
(2)求二面角的余弦值.
在中,,斜边.以直线为轴旋转得到,且二面角是直二面角,动点在斜边上.
(1)求证:平面平面;
(2)当时,求异面直线与所成角的正切值;
(3)求与平面所成最大角的正切值.
(本小题满分12分)如图,三棱台中,分别为的中点.
(Ⅰ)求证:平面;
(Ⅱ)若求证:平面平面.
(本小题满分12分)如图,四棱锥P-ABCD中,底面为菱形,且,.
(Ⅰ)求证:;
(Ⅱ)若,求二面角的余弦值。
如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,动点M在线段PQ上,E,F分别为AB,BC的中点,设异面直线EM与AF所成的角为,则的最大值为 .
(本小题满分12分)
如图,在三棱锥P—ABC中,PC⊥底面ABC,AB⊥BC,D,E分别是AB,PB的中点.
(Ⅰ)求证:DE∥平面PAC.
(Ⅱ)求证:AB⊥PB;
(Ⅲ)若PC=BC,求二面角P—AB—C的大小.
试题篮
()