如图所示,PA⊥平面ABCD,ABCD是矩形,AB=1,,点F是PB的中点,点E在边BC上移动.
(1)若,求证:;
(2)若二面角的大小为,则CE为何值时,三棱锥的体积为.
如图,在三棱锥中,是等边三角形,.
(1)证明::;
(2)证明:;
(3)若,且平面平面,求三棱锥体积.
如图,AB是圆O的直径,点C是弧AB的中点,点V是圆O所在平面外一点,是AC的中点,已知,.
(1)求证:OD//平面VBC;
(2)求证:AC⊥平面VOD;
(3)求棱锥的体积.
如图, 已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.
(1)求证: EC⊥CD ;
(2)求证:AG∥平面BDE;
(3)求:几何体EG-ABCD的体积.
浙江理)在空间中,过点作平面的垂线,垂足为,记。设是两个不同的平面,对空间任意一点,,恒有,则( )
A.平面与平面垂直 |
B.平面与平面所成的(锐)二面角为 |
C.平面与平面平行 |
D.平面与平面所成的(锐)二面角为 |
·大纲理)如图,四棱锥P-ABCD中,,,和都是等边三角形.
(1)证明:;
(2)求二面角A-PD-C的大小.
如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.求证:
(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD.
如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是 棱AP,AC,BC,PB的中点.
(1)求证:DE∥平面BCP;
(2)求证:四边形DEFG为矩形;
(3)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.
在球面上有四个点P、A、B、C,如果PA、PB、PC两两互相垂直,且PA=PB=PC=a.则这个球的表面积为( )
A.
B.
C.
D.
已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,,则( )
A.α∥β且l∥α |
B.α⊥β且l⊥β |
C.α与β相交,且交线垂直于l |
D.α与β相交,且交线平行于l |
如图①,已知ABC是边长为l的等边三角形,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将ABF沿AF折起,得到如图②所示的三棱锥A-BCF,其中BC=.
(1)证明:DE//平面BCF;
(2)证明:CF平面ABF;
(3)当AD=时,求三棱锥F-DEG的体积
菱形的边长为3,与交于,且.将菱形沿对角线折起得到三棱锥(如图),点是棱的中点,.
(1)求证:平面平面;
(2)求三棱锥的体积.
如图1,在直角梯形中,,,且.
现以为一边向梯形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,为的中点,如图2.
(1)求证:∥平面;
(2)求证:;
(3)求点到平面的距离.
试题篮
()