如图所示,在四棱锥PABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(1)证明:PC⊥AD;
(2)求二面角A-PC-D的正弦值.
下列命题中错误的是
A.如果平面⊥平面,那么平面内一定存在直线平行于平面
B.如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面
C如果平面⊥平面,平面⊥平面,,那么⊥平面
D.如果平面⊥平面,那么平面内所有直线都垂直于平面
如图,在三棱锥P-ABC中,.
(1)求证:平面PBC⊥平面PAC;
(2)若PA=1,AB=2,BC=,在直线AC上是否存在一点D,使得直线BD与平面PBC所成角为30°?若存在,求出CD的长;若不存在,说明理由.
试题篮
()