如图,三棱柱
中,
,
(1)求证:
;
(2)若
,问
为何值时,三棱柱
体积最大,并求此最大值.
如图,四棱锥
的底面边长为8的正方形,四条侧棱长均为
.点
分别是棱
上共面的四点,平面
平面
,
平面
.
(1)证明:
(2)若
,求四边形
的面积.
在正三棱柱ABC-A1B1C1中,AB=AA1,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且.
(1)求证:EF∥平面BDC1;
(2)求证:平面.
如图,在四棱柱中,底面ABCD和侧面都是矩形,E是CD的中点,,
.
(1)求证:;
(2)若平面与平面所成的锐二面角的大小为,求线段的长度.
如图,在三棱锥 中, 为 的中点, 平面 ,垂足 落在线段 上,已知
(1)证明: ;
(2)在线段
上是否存在点
,使得二面角
为直二面角?若存在,求出
的长;若不存在,请说明理由.
如图,已知四棱锥P—ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD的中点.
(1)证明:PE⊥BC;
(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.
如图,在四棱锥中,,,,,,为线段上的点.
(Ⅰ)证明:;
(Ⅱ)若是的中点,求与所成的角的正切值;
(Ⅲ)若满足,求的值.
如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1=.
(1)证明:A1C⊥平面BB1D1D;
(2)求平面OCB1与平面BB1D1D的夹角θ的大小.
如图,直三棱柱中,,
为中点,上一点,且.
(1)当时,求证:平面;
(2)若直线与平面所成的角为,求的值.
试题篮
()