优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用 / 解答题
高中数学

(本小题满分12分)
如图,四棱锥中,底面为平行四边形,
底面 .

(1)证明:
(2)求三棱锥的高.

  • 题型:未知
  • 难度:未知

如图2,在正方体中,为棱的中点.


(1)求证:平面
(2)求证:

  • 题型:未知
  • 难度:未知

如图,在直四棱柱ABCD﹣A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,   AB∥DC.

(1)求证:D1C⊥AC1
(2)设E是DC上一点,试确定E的位置,使D1E∥平面A1BD,并说明理由.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,已知长方形中,的中点.
沿折起,使得平面平面的中点.
  
(1)求证:; 
(2)求直线与平面ADM所成角的正弦值.

  • 题型:未知
  • 难度:未知

(本小题满分12分)在三棱柱中,相交于点

(1)求证:平面
(2)求二面角的正弦值.

  • 题型:未知
  • 难度:未知

如图1,在直角梯形中,的中点,是AC与的交点,将沿折起到图2中的位置,得到四棱锥

(Ⅰ)证明:平面
(Ⅱ)当平面平面时,四棱锥的体积为,求的值.

  • 题型:未知
  • 难度:未知

如图,PA⊥平面ABCD,矩形ABCD的边长AB=1,BC=2,E为BC的中点.

(1)证明:PE⊥DE;
(2)如果PA=2,求异面直线AE与PD所成的角的大小.

  • 题型:未知
  • 难度:未知

如图,在四棱锥中,底面为直角梯形,,平面底面的中点,是棱上的点,

(Ⅰ)求证:平面平面
(Ⅱ)若二面角,设,试确定的值.

  • 题型:未知
  • 难度:未知

(本小题满分12分)在四棱锥P-ABCD中,底面ABCD是矩形,平面PAD平面ABCD,

(Ⅰ)求证:平面PCD平面PAB;
(Ⅱ)设E是棱AB的中点,,求二面角的余弦值.

  • 题型:未知
  • 难度:未知

(本小题满分12分)正的边长为4,边上的高,分别是边的中点,现将沿翻折成直二面角

(Ⅰ)试判断直线与平面的位置关系,并说明理由;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在线段上是否存在一点,使?证明你的结论.

  • 题型:未知
  • 难度:未知

如图,在底面是菱形的四棱锥P—ABCD中,∠ABC=600,PA=AC=a,PB=PD=,点E在PD上,且PE:ED=2:1.

(Ⅰ)证明PA⊥平面ABCD;
(Ⅱ)求以AC为棱,EAC与DAC为面的二面角的大小;
(Ⅲ)在棱PC上是否存在一点F,使BF//平面AEC?证明你的结论.

  • 题型:未知
  • 难度:未知

如图,在正方体ABCD-中,棱长为a,E为棱CC1上的的动点.

(1)求证:A1E⊥BD;
(2)当E恰为棱CC1的中点时,求证:平面A1BD⊥平面EBD.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,在三棱锥S -ABC中,△ABC是边长为2的正三角形,平面SAC⊥平面ABC,SA=SC=,M为AB的中点.

(1)证明:AC⊥SB;
(2)求点B到平面SCM的距离。

  • 题型:未知
  • 难度:未知

(本小题满分12分)
如图,已知四棱锥中,平面,底面是正方形,上的动点,为棱的中点.

(1)求证:平面
(2)试确定点的位置,使得平面平面,并说明理由.

  • 题型:未知
  • 难度:未知

(本小题满分12分)
如图,在三棱锥中,平面的中点,分别为线段上的动点,且

(1)求证:
(2)若的中点,是线段靠近的一个三等分点,求二面角的余弦值。

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用解答题