如图,四棱锥P—ABCD的底面ABCD为一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点.
(1)求证:BE//平面PAD;
(2)若BE⊥平面PCD。
(i)求异面直线PD与BC所成角的余弦值;
(ii)求二面角E—BD—C的余弦值.
(本小题满分14分)如图所示的四棱锥P—ABCD中,底面ABCD为菱形,PA⊥平面ABCD,E为PC的中点,求证:
(1)PA∥平面BDE;
(2)平面PAC⊥平面PBD.
(本小题满分15分)如图,已知四棱锥,底面
为边长为2的菱形,
平面
,
,
是
的中点,
.
(Ⅰ) 证明:;
(Ⅱ) 若为
上的动点,求
与平面
所成最大角的正切值.
如图,正四棱锥中,
分别为
的中点。设
为线段
上任意一点。
(Ⅰ)求证:;
(Ⅱ)当为线段
的中点时,求直线
与平面
所成角的余弦值。
(本小题满分12分)如图,在四棱锥中,
底面
,
是直角梯形,
,
,
,
是
的中点.
(1)求证;平面平面
;
(2)若二面角的余弦值为
,求直线
与平面
所成角的正弦值.
(本小题满分12分)如图1,在边长为的正方形
中,
,且
,且
,
分别交
于点
,将该正方形沿
折叠,使得
与
重合,构成图
所示的三棱柱
,在图
中:
(1)求证:;
(2)在底边上有一点
,使得
平面
,求点
到平面
的距离.
如图,在三棱锥中,△
是边长为
的正三角形,
,
,
分别为
,
的中点,
,
.
(Ⅰ)求证:平面
;
(Ⅱ)求直线与平面
所成角的正弦值.
(本小题满分14分)如图,在四棱锥P-ABCD中,底面ABCD是正方形,
侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.
⑴求证:PA∥平面BDE;
⑵求证:平面BDE⊥平面PBC.
(本小题满分12分)
如图,已知,
分别是正方形
边
,
的中点,
与
交于点
,
都垂直于平面
,且
,
是
中点.
(Ⅰ)求证:平面平面
;
(Ⅱ)求二面角的余弦值.
试题篮
()