(本小题满分12分)如图,在菱形中,,, 分别是边,的中点,,沿将△翻折到△,连接,得到如图的五棱锥.
(Ⅰ)求证:平面;
(Ⅱ)若,求二面角的大小.
如图,在三棱锥中,平面,,,、、分别为、、的中点,、分别为线段、上的动点,且有.
(1)求证:面;
(2)探究:是否存在这样的动点M,使得二面角为直二面角?若存在,求CM的长度;若不存在,说明理由.
(本小题满分12分)如图,是正方形,平面.
(1)求证:平面;
(2)若,,点在线段上,且,求证:平面.
如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2, AD=CD=,PA=,∠ABC=120°,G为线段PC上的点
(Ⅰ)证明:BD⊥面PAC
(Ⅱ)若G是PC的中点,求DG与APC所成的角的正切值
(Ⅲ)若G满足PC⊥面BGD,求的值.
(本小题满分14分)已知三棱锥中,平面,,为中点,为的中点,
(1)求证:平面;
(2)求证:平面平面.
如图,四棱锥中,底面ABCD为菱形,,Q是AD的中点.
(Ⅰ)若,求证:平面PQB平面PAD;
(Ⅱ)若平面APD平面ABCD,且,点M在线段PC上,试确定点M的位置,使二面角的大小为,并求出的值.
【原创】(本小题满分12分)如图,在四棱锥中,底面是正方形,底面,, 点分别是的中点,,且交于点.
(Ⅰ)求证:平面;
(Ⅱ)求证:平面⊥平面.
(本小题满分14分)如图,在三棱锥P- ABC中,已知平面PBC 平面ABC.
(1)若AB BC,CP PB,求证:CP PA:
(2)若过点A作直线⊥平面ABC,求证://平面PBC.
如图,在梯形ABCD中,AB∥CD,,,平面平面,四边形是矩形,,点在线段上。
(1)求证:平面;
(2)当为何值时,∥平面?写出结论,并加以证明;
(3)当EM为何值时,AM⊥BE?写出结论,并加以证明。
(本题15分)如图,三棱锥中,底面,是正三角形,,,是的中点.
(1)求证:平面;
(2)设二面角的大小为,求的值.
(本题15分)如图,三棱锥中,底面,是正三角形,,,是的中点.
(1)求证:平面;
(2)设二面角的大小为,求的值.
试题篮
()