优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用 / 解答题
高中数学

(本小题满分12分)如图,在多面体中,平面,且是边长为2的等边三角形,与平面所成角的正弦值为.
(Ⅰ)在线段上存在一点F,使得,试确定F的位置;
(Ⅱ)求二面角的平面角的余弦值.

  • 题型:未知
  • 难度:未知

如图,一张平行四边形的硬纸片中,。沿它的对角线把△折起,使点到达平面外点的位置。
(Ⅰ)△折起的过程中,判断平面与平面的位置关系,并给出证明;
(Ⅱ)当△为等腰三角形,求此时二面角的大小。

  • 题型:未知
  • 难度:未知

如图,已知四棱锥中,底面是直角梯形,是线段上不同于的任意一点,且

(1)求证:
(2)求证:
(3)求三棱锥的体积。

  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,已知四面体ABCD的四个面均为锐角三角形,E、F、G、H分别为边AB、BC、CD、DA上的点,BD∥平面EFGH,且EH=FG.

(1) 求证:HG∥平面ABC;
(2) 请在面ABD内过点E作一条线段垂直于AC,并给出证明.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图所示,直角梯形ACDE与等腰直角△ABC所在平面互相垂直,F为BC的中点,,AE∥CD,DC=AC=2AE=2.

(Ⅰ)求证:平面BCD平面ABC
(Ⅱ)求证:AF∥平面BDE;
(Ⅲ)求四面体B-CDE的体积.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图所示,直角梯形ACDE与等腰直角所在平面互相垂直,F为BC的中点,,AE∥CD,.

(Ⅰ)求证:∥平面
(Ⅱ)求二面角的余弦值.

  • 题型:未知
  • 难度:未知

如图,已知正三棱柱的各条棱长都为a,P为上的点。
(1)试确定的值,使得PC⊥AB;
(2)若,求二面角P—AC—B的大小;
(3)在(2)的条件下,求到平面PAC的距离。

  • 题型:未知
  • 难度:未知

如图在直三棱柱中,.
(Ⅰ)求证:;(Ⅱ)求二面角的余弦值大小;
(Ⅲ)在上是否存在点,使得∥平面, 若存在,试给出证明;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

已知,求证:

  • 题型:未知
  • 难度:未知

如图,已知正三棱柱的所有棱长都为2,为棱的中点,
(1)求证:平面
(2)求二面角的余弦值大小.

  • 题型:未知
  • 难度:未知

如图,在直三棱柱中,分别是的中点,且.
(1)求证:
(2)求证:平面平面.

  • 题型:未知
  • 难度:未知

(本题10分)
如图,在正四棱柱ABCD—A1B1C1D1中,AA1=,AB=1,E是DD1的中点。
(I)求证:B1D⊥AE;
(II)求证:BD1 ||平面EAC
 

  • 题型:未知
  • 难度:未知

如图所示,已知ABCD是正方形,PD⊥平面ABCD,
PD=AD=2.
(1)求异面直线PC与BD所成的角;
(2)在线段PB上是否存在一点E,使PC⊥平面ADE?
若存在,确定E点的位置;若不存在,说明理由.

  • 题型:未知
  • 难度:未知

如图,在几何体中,四边形为平行四边形,且面,且,中点.
(Ⅰ)证明:平面
(Ⅱ)求直线与平面所成角的正弦值.

  • 题型:未知
  • 难度:未知

(本小题满分14分)已知如图(1),梯形中,分别是上的动点,且,设)。沿将梯形翻折,使平面平面,如图(2)。
(Ⅰ)求证:平面平面
(Ⅱ)若以为顶点的三棱锥的体积记为,求的最大值;
(Ⅲ)当取得最大值时,求二面角的正弦值.

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用解答题