优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用 / 解答题
高中数学

如图,在四棱锥中,底面为菱形,的中点.

(1)若,求证:平面平面
(2)设点是线段上的一点,,且平面
(1)求实数的值;
(2)若,且平面平面,求二面角的大小.

  • 题型:未知
  • 难度:未知

如图,四边形为矩形,

(1)
(2)

  • 题型:未知
  • 难度:未知

的中点,求:

(1)
(2)

  • 题型:未知
  • 难度:未知

如图,菱形的边长为6,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,

(1)求证:
(2)求到平面的距离.

  • 题型:未知
  • 难度:未知

已知三棱柱底面分别为的中点.

(1)求证:平面
(2)求证:平面平面

  • 题型:未知
  • 难度:未知

如图,已知四棱锥P-ABCD,底面ABCD为边长为2的菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.

(Ⅰ)判定AE与PD是否垂直,并说明理由;
(Ⅱ)若PA=2,求二面角E-AF-C的余弦值.

  • 题型:未知
  • 难度:未知

如图,在正方体的棱长为为棱上的一动点.

(1)若为棱的中点,
①求四棱锥的体积  
②求证:面
(2)若,求证:为棱的中点.

  • 题型:未知
  • 难度:未知

如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60o,PA=AB,

(1)求证:证明:BD⊥平面PAC;
(2)求PC与平面PAB所成角的正切值.

  • 题型:未知
  • 难度:未知

如图,在直三棱柱中,分别是棱上的点(点不同于点),且的中点.

求证:(1)平面平面
(2)直线平面

  • 题型:未知
  • 难度:未知

如图所示,在四棱锥P­ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(1)证明:PC⊥AD;
(2)求二面角A-PC-D的正弦值.

  • 题型:未知
  • 难度:未知

在四棱锥中,底面为矩形,侧棱底面,且,过棱的中点,作于点,连接

(Ⅰ)证明:
(Ⅱ)求异面直线所成角的余弦值及二面角的余弦值.

  • 题型:未知
  • 难度:未知

在四棱锥中,底面是矩形,平面,以的中点为球心,为直径的球面交于点,交于点

(1)求证:直线平面
(2)求证:平面平面

  • 题型:未知
  • 难度:未知

在正方体中,的中点.

(1)求证:平面
(2)求证:

  • 题型:未知
  • 难度:未知

如图,是圆台上底面圆的直径,是圆上不同于的一点,是下底面圆上一点,过的截面垂直与下底面,的中点,又

(1)求证:平面
(2)求二面角的余弦值.

  • 题型:未知
  • 难度:未知

如图,正方体中,是线段上一点.

(1)证明:平面
(2)若二面角的余弦值为,判断点在线段上位置,并说明理由.

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用解答题